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1 Traditional Hypothesis Testing

We’ve already known that in hypothesis testing, we have a null hypothesis, whereH0 : θ = θ0

versus alternative hypothesis HA : θ 6= θ0. We also have a presumed pdf function for the
variables. Based on these information, we can construct a critical point/region when whatever
level of significance α is given. Then if a sample of size n comes in, we can use the sample mean
to decide if we accept the null hypothesis or reject it based on whether it falls within the critical
region or not.

Example 1 Let X be variable from a population of a normal distribution with unknown
µ but known variance σ2 = 1. If we decide to use µ0 = 0 as null hypothesis, we can construct
a critical region of 0.05 significance (two-sided) as follows:

Figure 1: Level of significance at 0.05 (two-sided)

We use Z-transformation to convert the sample mean to z and decide:

Z = x− 0
1/
√
n

Example 2 For binomial distribution, the parameter in question is p, the success prob-
ability. For a sample of size n, the sample mean or sum is also in normal distribution because
of CLT. Let k be the total successes in n trials, the Z-transformation for binomial is:

Z = k − np√
np(1− p)
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Of course, we can also construct it based on sample success mean,

Z = k/n− p√
p(1− p)/n

Comment For discrete distribution, we simply list out options and their corresponding
probability, and construct the critical region accordingly.

2 Definition of GLR and GLRT

Notion We assume the pdf of variable y is f(y; θ) where θ represents ONE or MORE
unknown parameters, then

1. Ω denotes the total possible parameter space of θ, that is all possible values of θ.

2. ω denotes possible parameter values admissible ONLY under H0.

3. ωC must denote all other values of Ω under HA.

Let y1, y2, . . . yn be a sample of size n from distribution f(y; θ), and we pick θ = θ0 for H0.
Recall likelihood function,

L(θ0) = f(y1; θ0)f(y2; θ0) · · · f(yn; θ0)

We know likelihood function is a pdf of parameter θ. But L(θ0) may or may not at the peak of
the pdf curve. On the other hand, if we put the maximum likelihood estimate θe into L(θ), we
can get the maximum of likelihood function,

max
θe∈Ω

L(θe) = f(y1; θe)f(y2; θe) · · · f(yn; θe)

L(θe) must be the maximum of likelihood function because we find θe by differentiating L(θ) to
get it. Now we can introduce the definition below.

Generalized Likelihood Ratio

λ = L(θ0)
L(θe)

, where 0 < λ 6 1

Comment Given a specific sample, we have λ as a point value. But if we think of sample
as n variables from a population of distribution, λ is a function of sample values. Furthermore,
we know by intuition that the larger the λ is the better θ0 matches sample data. Otherwise, θ0

may not be a good estimate and should be rejected.
Now we can set a test rule about λ to accept or reject H0.
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Definition A generalized likelihood ratio test is one that rejects H0 whenever

0 < λ 6 λ∗

where λ∗ is chosen so that
P (0 < Λ 6 λ∗|H0) = α

By convention, people use Λ to represent λ as a variable (λ is now regarded as a function of
sample values).

Apparently, from one end 0, H0 doesn’t match the sample at all, to the other end 1, matches
perfectly, we are interested in finding a position λ∗ so that the cumulative probability of Λ pdf
equals α.

α =
∫ λ∗

0
fΛ(λ) dλ

As λ is a ratio, it might be difficult to find the pdf fΛ(λ) directly. But since λ is a function of
variable y, we can construct the integral from y pdf.

3 Examples Revisiting

Example 1: revisiting
For a sample of size n from a normal distribution, the maximum likelihood estimate for

µe = 1
n

n∑
i=1

yi = y, so

L(µ0) =
n∏
i=1

1√
2π

exp
[
−y

2
i

2

]

and
L(µe) =

n∏
i=1

1√
2π

exp
[
−(yi − y)2

2

]

then

λ = L(µ0)
L(µe)

=
exp

[
−1

2
∑n
i=1 y

2
i

]
exp

[
−1

2
∑n
i=1(yi − y)2

]
A little trick on the numerator:

n∑
i=1

y2
i =

n∑
i=1

(yi − y + y)2 =
n∑
i=1

(yi − y)2 +
n∑
i=1

2(yi − y)y︸ ︷︷ ︸
0

+
n∑
i=1

y2 =
n∑
i=1

(yi − y)2 + ny2

put it back to the above equation,

λ =
exp

[
−1

2
∑n
i=1(yi − y)2

]
exp

[
−1

2ny
2
]

exp
[
−1

2
∑n
i=1(yi − y)2

] = exp
[
−1

2ny
2
]
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If we pick some number λ∗ so that λ 6 λ∗, then

exp
[
−1

2ny
2
]
6 λ∗

y2 >
−2 lnλ∗

n
|y − 0|
1/
√
n

>

√
−(2/n) lnλ∗

1/
√
n

. divide both sides by 1/
√
n

We can tell that the left side is Z-transformation of the sample mean of size n from a normal
distribution. If α = 0.05, we just need to calculate λ∗ by√

−(2/n) lnλ∗
1/
√
n

= 1.96

Example 3 Suppose a random sampleX1, X2, . . . , Xn is taken from a normal distribution
population with unknown µ and σ2. Find the size α likelihood ratio test for testing the null
hypothesis H0 : µ = µ0 against two-sided HA : µ 6= µ0.

We find maxL(θe) first. Use the maximum likelihood estimates, respectively,

µ̂ = x and σ̂2 = 1
n

n∑
i=1

(xi − x)2

then

maxL(θe) =
n∏
i=1

1√
2πσ̂

exp
[
−(xi − µ̂)2

2σ̂2

]

=
[

1
2π( 1

n)
∑n
i=1(xi − x)2

]n
2

exp
[
−

∑n
i=1(xi − x)2

2( 1
n)
∑n
i=1(xi − x)2

]

=
[

1
2π( 1

n)
∑n
i=1(xi − x)2

]n
2

· e−
n
2

=
[

ne−1

2π
∑n
i=1(xi − x)2

]n
2

Under null hypothesis, we have

µ = µ0 and σ2 = 1
n

n∑
i=1

(xi − µ0)2

Comment How do we find σ2 under null hypothesis? Well, we use maximum likelihood
method again. Recall that in a sample of size n,

lnL(µ, σ2) = −n2 ln
(
2πσ2

)
− 1

2
1
σ2

n∑
i=1

(xi − µ)2
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let

∂ lnL(µ, σ2)
∂σ2 = −n2

1
σ2 + 1

2

( 1
σ2

)2 n∑
i=1

(xi − µ)2 = 0

σ2 = 1
n

n∑
i=1

(xi − µ0)2 . µ=µ0

Okay, now we have null parameters to construct the numerator,

L(θ0) =
n∏
i=1

1√
2πσ

exp
[
−(xi − µ0)2

2σ2

]

=
[

1
2π( 1

n)
∑n
i=1(xi − µ0)2

]n
2

exp
[
−

∑n
i=1(xi − µ0)2

2( 1
n)
∑n
i=1(xi − µ0)2

]

=
[

1
2π( 1

n)
∑n
i=1(xi − µ0)2

]n
2

· e−
n
2

=
[

ne−1

2π
∑n
i=1(xi − µ0)2

]n
2

Taking the ratio of the two likelihoods,

λ = L(θ0)
L(θe)

=
[

ne−1

2π
∑n
i=1(xi − µ0)2

]n
2
/[

ne−1

2π
∑n
i=1(xi − x)2

]n
2

=
[ ∑n

i=1(xi − x)2∑n
i=1(xi − µ0)2

]n
2

A small algebraic trick kicks in here:

n∑
i=1

(xi − µ0)2 =
n∑
i=1

(xi − x+ x− µ0)2

=
n∑
i=1

(xi − x)2 + 2
n∑
i=1

(xi − x)(x+ µ0)︸ ︷︷ ︸
0

+
n∑
i=1

(x− µ0)2

=
n∑
i=1

(xi − x)2 +
n∑
i=1

(x− µ0)2

=
n∑
i=1

(xi − x)2 + n(x− µ0)2

The ratio therefore can be further simplified as:

λ =
[ ∑n

i=1(xi − x)2∑n
i=1(xi − x)2 + n(x− µ0)2

]n
2

=

 1

1 + n(x− µ0)2∑n
i=1(xi − x)2


n
2

We then let λ 6 λ∗, and integrate pdf of λ to equate α, and find the value of λ∗ from the
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equation,

α =
∫ λ∗

0
fΛ(λ) dλ

It looks intimidating to find the pdf for λ here. However, we can move about the fraction
further,  1

1 + n(x− µ0)2∑n
i=1(xi − x)2

 6 (λ∗)2/n

n(x− µ0)2∑n
i=1(xi − x)2 > (λ∗)−2/n − 1

n(x− µ0)2

1
n−1

∑n
i=1(xi − x)2 > (n− 1)((λ∗)−2/n − 1)

(x− µ0)2

S2/n
> (n− 1)[(λ∗)−2/n − 1]

Notice above 1
n− 1

n∑
i=1

(xi−x)2 is the sample variance, so we use S2 to denote it. Now to make

it tidier, we use c2 to denote right side of the inequality, i.e., let c2 = (n− 1)[(λ∗)−2/n − 1].

(x− µ0)2

S2/n
> c2

|x− µ0|
S/
√
n

> c

It turns out the left side of the inequality follows a T distribution with n − 1 degrees of
freedom. So we can use T distribution to choose c = tα/2,n−1. Tracing back forth, we get the
threshold of λ∗.

4 GLRT is Hypothesis Testing

Example 4 Suppose y1, y2, . . . , yn is a random sample from a uniform pdf over the
interval [0, θ], where θ is unknown. Test H0 : θ = θ0 versus HA : θ < θ0.

We know pdf of Y is: 1/θ, and cdf is:∫ y

0

1
θ
dy = y

θ

As we discussed before, the best estimator for θ is ymax, we now will use it to test null hypothesis.

4.1 traditional way

The pdf of ymax is the first derivative of cdf ymax:

F (ymax) =
(
y

θ0

)n
and f(ymax) = d

dy
F (ymax) = nyn−1

θn0
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f(ymax) is a pdf on the scope of [0, θ0]. Yes, to test H0 we first assume it is true.

0 0.5 1 1.5 2 2.5 3
0

1

2

ymax

f
(y

m
ax

)

Figure 2: pdf plot of f(ymax) when H0 : θ0 = 3, n = 8

By intuition, we see the larger f(ymax) is, the more it supports the null hypothesis at θ0.
Apparently, it is a one-sided test. So on a scope from 0 to θ0, we need to find a point p on x
axis that the integral on [0, p] is α, which in turn means the critical region to reject H0.

α =
∫ p

0
f(ymax) dy =

∫ p

0

nyn−1

θn0
dy =

(
p

θ0

)n
As a result, when p 6 θ0 n

√
α, we reject H0.

4.2 GLRT way

For a sample of size n, null likelihood is

L(θ0) =
( 1
θ0

)n
and maximum estimate likelihood is

L(θe) =
( 1
ymax

)n
then

λ = (1/θ0)n

(1/ymax)n =
(
ymax
θ0

)n
We don’t have directly way to find the pdf of λ, but by differentiating y-denoted λ, we get

a pdf of λ wrt y.

fΛ(λ) = λ′ =
[(
ymax
θ0

)n]′
= nyn−1

θn0
= f(ymax)

A plot graph of fΛ(λ) below,
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Figure 3: pdf plot of fΛ(λ) wrt λ when H0 : θ0 = 3, n = 8

We need to find a point λ∗ on x axis so that

α =
∫ λ∗

0
fΛ(λ) dλ

Let λ∗ =
(
p

θ0

)n
, and expand the scope of integral from [0, 1] to [0, θ0], our task becomes

finding p so that

α =
∫ p

0

nyn−1

θn0
dy

As shown above, the critical point is p = θ0 n
√
α. Substituting back to get our result:

λ∗ = α
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