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Abstract

Stirling formula and De Moivre Laplace theorem are important intermediate steps
toward the central limit theorem. However, in some undergraduate textbooks on
mathematical statistics, the step by step proof is usually omitted, which I found
sometimes poses quite a huge challenge for students to fully understand the logic
behind the formula of normal distribution. This is the reason I digged into the internet
for helps. Among numerous articles and papers, I referred frequently to [BT14] and
Jacek Cichon’s ”Stirling Approximation Formula” for my note, and appreciate a lot
for their generous share of knowledges.

1 Stirling’s Formula

Stirling’s formula is used during the proof of De Moivre Laplace Theorem. It’s an
approximation of the n factorial, which takes the following form:

Stirling’s Formula

n! ≈
√

2πn
(
n

e

)n

2 A rough Estimate

If we take logarithm of n!, the product of “1 ·2 ·3 · · ·n” becomes the sum of logarithms
(let’s name it as “ S(n) ” ), i.e., S(n) = ln 1 + ln 2 + · · · + lnn. Now we can use some
comparisons as shown below:
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Figure 1: S(n) vs. ln x

We can directly derive the following bounds:

∫ n

1
ln xdx 6 S(n) 6

∫ n+1

1
ln xdx (1)

Integrate the left side of the above formula, we have
∫ n

1
ln xdx = (x ln x − x)

∣∣∣∣n
1

=

n lnn − n − 1 ∗ ln 1 + 1 = n lnn − (n − 1). The same integrated form is used to get the

result for
∫ n+1

1
ln xdx = (n+ 1) ln(n+ 1)− n.

We now can change the formula into the form

ln nn

en−1 6 S(n) 6 ln (n+ 1)n+1

en
(2)

Since n! = exp[S(n)], we get the esp. (1) in the form

nn

en−1 6 n! 6 (n+ 1)n+1

en
(3)

Becasue (n+ 1)n+1

en
=
(
n+ 1
e

)n
(n+1) =

(
n

e
· n+ 1

n

)n
(n+1) =

(
n

e

)n
·
(

1 + 1
n

)n
(n+

1), and as n →∞,
(

1 + 1
n

)n
= e, the right side of esp. (3) becomes e(n+ 1)

(
n

e

)n
, we

have a neater form of eq. (3) as

e

(
n

e

)n
6 n! 6 e(n+ 1)

(
n

e

)n
which is saying that

n! = f(n)
(
n

e

)n
(4)

for a function f(n) where e 6 f(n) 6 e(n+ 1).
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3 Finding Constant C

We re-arrange eq. (4) by dividing both sides with
√

2n
(
n

e

)n
, we have

n!√
2n
(
n
e

)n = f(n)√
2n

Why we need to divide with
√

2n cannot be deduced from the equation itself, but let’s
assume for the time being that n!√

2n
(
n
e

)n approaches to some constant number C, and

we are going to find this number so that n! ≈ C
√

2n
(
n

e

)n
.

3.1 The integration of
∫

sinn xdx

Integrating by parts we get∫
sinn xdx =

∫
sinn−1 x sin xdx

= − sinn−1 x cosx+
∫

(n− 1) sinn−2 x cos2 xdx

= − sinn−1 x cosx+
∫

(n− 1) sinn−2 x(1− sin2 x)dx

= − sinn−1 x cosx+
∫

(n− 1) sinn−2 xdx−
∫

(n− 1) sinn xdx

n

∫
sinn xdx = − sinn−1 x cosx+ (n− 1)

∫
sinn−2 xdx

so ∫
sinn xdx = − 1

n
sinn−1 x cosx+ n− 1

n

∫
sinn−2 xdx

If we evaluate from 0 ∼ π

2 , the above equation reduces to

∫ π/2

0
sinn xdx = n− 1

n

∫ π/2

0
sinn−2 xdx

(a) for n = 2k, Seven =
∫ π/2

0
sin2k xdx = 2k − 1

2k · 2k − 3
2k − 2 · · ·

1
2 ·
∫ π/2

0
sin0 xdx, we have

Seven = π

2

n/2∏
k=1

2k − 1
2k (5)

(b) for n = 2k + 1, Sodd =
∫ π/2

0
sin2k+1 xdx = 2k

2k + 1 ·
2k − 2
2k − 1 · · ·

2
3 ·
∫ π/2

0
sin1 xdx

=
(n−1)/2∏
k=1

2k
2k + 1 · (− cosx)

∣∣∣∣π/2

0
, we have
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Sodd =
(n−1)/2∏
k=1

2k
2k + 1 (6)

3.2 Wallis product formula

Wallis Formula
∞∏
n=1

2n
2n− 1

2n
2n+ 1 = π

2

From eq. (5) and (6), we can tell that when k and n goes to ∞, the left side of Wallis
formula is actually π

2 ·
Sodd
Seven

and for x ∈ (0, π/2),

0 < sin2k+2 x < sin2k+1 x < sin2k x

and
0 < S2k+2 < S2k+1 < S2k

divide by S2k on each term, we have

0 < S2k+2
S2k

<
S2k+1
S2k

< 1

Because lim
k→∞

S2k+2
S2k

= lim
k→∞

2k + 1
2k + 2 = 1 <

S2k+1
S2k

< 1, according to squeeze theorem,
S2k+1
S2k

= 1. This proves the Wallis formula.

Now we can use Wallis formula to obtain constant C, but first of all, we need to
re-write the Wallis formula in a compact way:

n∏
n=1

2n
2n− 1

2n
2n+ 1 = 22n(n!)2

n∏
n=1

1
2n− 1

1
2n+ 1

= 22n(n!)2 · 2 · 4 · · · 2n
(2n)! · 2 · 4 · · · 2n

(2n+ 1)!

= 22n(n!)222n(n!)2

((2n)!)2(2n+ 1)

so
n∏
n=1

2n
2n− 1

2n
2n+ 1 = 24n(n!)4

((2n)!)2(2n+ 1) (7)

since we pick C so n! ≈ C
√

2n
(
n

e

)n
, and the formula still holds if we substitute n by
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2n: (2n)! ≈ C
√

4n
(2n
e

)2n
, we can replace n! and (2n)! with C formula into eq. (7)

24n(n!)4

((2n)!)2(2n+ 1) =
24n(C

√
2n
(
n
e

)n)4

(C
√

4n(2n
e )2n)2(2n+ 1)

=
24nC44n2 (n

e

)4n
C24n(2n

e )4n(2n+ 1)

=
24nC2n

(
1
2

)4n

2n+ 1
= C2 n

2n+ 1

from Wallis formula, we know

lim
n→∞

C2 n

2n+ 1 = π

2

so the C for Stirling approximation:

C =
√
π

4 Proof of the Existence of the Limit and the Error Boundary

Although we’ve found constant C =
√
π, we haven’t proved

√
2nπ

(
n

e

)n
stays within

what interval of the exact number n!. Now let’s take a second look as eq. (3), we can
re-write the formula as

n lnn− n+ 1 6 lnn! 6 (n+ 1) ln(n+ 1)− n

true as well is the following formula

n lnn− n 6 lnn! 6 (n+ 1) ln(n+ 1)− n

We’ve already had the approximation of lnn! when n→∞ in Section 3, but we don’t
know how good the approximation is. Now we arbitrarily pick a number between n lnn−n
and (n+ 1) ln(n+ 1)−n, for example, (n+ 1

2) lnn−n, and look at the difference (maybe
not arbitrarily picked, for this number and the difference formed by it helps reach the
conclusion below):

dn = lnn!−
[
(n+ 1

2) lnn− n
]

We don’t know if lnn! is greater than [(n + 1
2) lnn − n] or not, but the result won’t be

different as we are looking into the tendency of dn. We want to prove the following two
properties:

(a) dn is monotone decreasing and converges to a limit d, as we’ve already find the
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approximation for lnn!, here lim
n→∞

d = ln
√

2πn
(
n

e

)n
−
[(
n+ 1

2

)
ln−n

]
;

(b) for every n, we have d < dn < d+ 1
12n .

4.1 Monotone Decreasing of dn toward d

If we look at the decrement of dn:

dn − dn+1 = lnn!−
[
(n+ 1

2) lnn− n
]
− ln(n+ 1)! +

[
(n+ 3

2) ln(n+ 1)− n− 1
]

= − ln(n+ 1)− (n+ 1
2) lnn+ n+ (n+ 3

2) ln(n+ 1)− n− 1

= (n+ 1
2) ln n+ 1

n
− 1

Now we need some techniques from Taylor Series expansion. First of all, we use t = 1
2n+ 1

to re-write the above formula as
1
2t ln 1 + t

1− t − 1

then we use polynomial to express the form of ln(1 + t):

ln(1 + t) = t− t2

2 + t3

3 − · · · = −
∞∑
k=1

(−1)k t
k

k

and the form of ln(1− t):

ln(1− t) = −t− t2

2 −
t3

3 − · · · = −
∞∑
k=1

tk

k

so
dn − dn+1 = 1

2t

(
−
∞∑
k=1

(−1)k t
k

k
+
∞∑
k=1

tk

k

)
− 1

= 1
2t

∞∑
k=0

2t2k+1

2k + 1 − 1

= 1
t

∞∑
k=1

t2k+1

2k + 1 (8)

as n→∞, t→ 0 from the positive side, so always dn− dn+1 > 0, and dn is monotone
decreasing.
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4.2 d bounded below by bn − 1/12n

Proceed with eq. (8),

dn − dn+1 = 1
t

∞∑
k=1

t2k+1

2k + 1 <
∞∑
k=1

t2k

3 = 1
3 ·

t2

1− t2

= 1
3 ·

1
(2n+ 1)2 − 1 (remark: t = 1

2n+ 1)

= 1
12 ·

1
n2 + n

= 1
12 ·

1
n
− 1

12 ·
1

n+ 1

re-arrange it, we have
dn −

1
12 ·

1
n
< dn+1 −

1
12 ·

1
n+ 1

which means function
(
dn −

1
12 ·

1
n

)
is increasing. In short, we prove that limit d ∈

(dn − 1/12n, dn), and we have the following inequality:

d < dn < d+ 1
12n (9)

4.3 the Error Boundary

Let g(n) = ln
√

2πn
(
n

e

)n
for short, eq. (9) becomes

g(n)−
[(
n+ 1

2

)
lnn− n

]
< lnn!−

[(
n+ 1

2

)
lnn− n

]
< g(n)−

[(
n+ 1

2

)
lnn− n

]
+ 1

12n

take them to the power of e, we have the boundary below

eg(n)+n

nn+1/2 <
n! · en

nn+1/2 <
eg(n)+n+1/12n

nn+1/2

1 < n!
eg(n) < e1/12n

√
2πn

(
n

e

)n
< n! <

√
2πn

(
n

e

)n (
1 + e1/12n

)
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