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Taylor’s Theorem is a very powerful tool to approximate any functions that are infinitely
differentiable on a certain interval between a and b. Of course, the exact value of a and b need
to be carefully defined, so the formula/series developed by the theorem shall converge within
the defined interval.

1 Description

Taylor’s Theorem If f and its first n derivatives f ′, f ′′, . . . , f (n) are continuous on the
closed interval between a and b, and f (n) is differentiable on the open interval betweena
and b, then there exists a number c between a and b such that

f(b) =f(a) + f ′(a)(b− a) + f ′′(a)
2! (b− a)2 + · · ·

+ f (n)(a)
n! (b− a)n + f (n+1)(c)

(n+ 1)! (b− a)n+1

A common formula for Taylor’s Theorem usually use x instead of b, and Rn(x) to stand for
the remainder term:

f(x) =f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·

+ f (n)(a)
n! (x− a)n +Rn(x)

where

Rn(x) = f (n+1)(c)
(n+ 1)! (x− a)n+1 for some c between a and x.

Furthermore, if we let a = 0, the above Taylor’s formula reduces to Maclaurin series (a
special case of Taylor’s series):

f(x) = f(a) + f ′(a)x+ f ′′(a)
2! x2 + · · ·+ f (n)(a)

n! xn +Rn(x)

2 An intuitive Explanation and Error Estimate (Convergence)

At point a, if Taylor’s polynomial formula and its derivatives (infinitely) have the same value
as the original function, maybe the two functions will perform quite the same around point a. I
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think this is the logic behind the theorem, and now let’s take a look at the remainder Rn(x) and
see if and under what conditions it goes to zero as n → ∞, which means the Taylor’s formula
would be a “perfect” approximation for the original function.

Lemma If there is a positive constant M such that |f (n+1)(c)| 6M for all c between x and
a, inclusive, then the remainder term Rn(x) in Taylor’s Theorem satisfies the inequality
and goes to zero as n→∞:

|Rn(x)| 6M
|x− a|n+1

(n+ 1)!

The above conclusion directly derives from the convergence of the form lim
n→∞

xn

n! = 0. So it’s
also true that if we choose x carefully so that |f (n+1)(c)| is equal to or less than a constant, the
Taylor’s formula holds for the function.

3 Applications of Taylor’s Formula

Use Taylor’s formula, especially when we pick a = 0, will give us some every useful series.

Frequently used Taylor series

1
1− x = 1 + x+ x2 + · · ·+ xn + · · · =

∞∑
n=0

xn , |x| < 1

1
1 + x

= 1− x+ x2 − · · ·+ (−x)n + · · · =
∞∑

n=0
(−x)n , |x| < 1

ex = 1 + x+ x2

2! + · · ·+ xn

n! + · · · =
∞∑

n=0

xn

n! , |x| <∞

sin x = x− x3

3! + x5

5! − · · ·+ (−1)n x2n+1

(2n+ 1)! + · · · =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)! , |x| <∞

cosx = x− x2

2! + x4

4! − · · ·+ (−1)n x2n

(2n)! + · · · =
∞∑

n=0

(−1)nx2n

(2n)! , |x| <∞

ln(1 + x) = x− x2

2 + x3

3 − · · ·+ (−1)n−1x
n

n
+ · · · =

∞∑
n=1

(−1)n−1xn

n
, −1 < x 6 1

tan−1 x = x− x3

3 + x5

5 − · · ·+ (−1)n x
2n+1

2n+ 1 + · · · =
∞∑

n=0

(−1)nx2n+1

2n+ 1 , |x| 6 1

4 Proof of Taylor’s Theorem

In order to approximate function f , let a polynomial function P be:

Pn(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n
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Pn(x) matches function f for the first n derivatives at x = a, and if we construct another
function φ(x) by adding the (n+ 1)th term, the matching still holds

φn(x) = Pn(x) +K(x− a)n+1

Matching of functions f(x) and φn(x) at x = a doesn’t lead to the conclusion that they also
math at x = b. However, we can pick a value for K to let the equation hold,

f(b) = φn(b) = Pn(b) +K(b− a)n+1 when K = f(b)−Pn(b)
(b−a)n+1

As long as a and b are fixed, we know K would be a constant. Now we need to construct a
third function G(x) to find this constant K to a more precise extent:

G(x) = f(x)− φn(x) = f(x)− Pn(x)−K(x− a)n+1 (A)

G(x) actually measures the difference between the original function f and the Taylor’s series
formula approximation, and it has two features by its nature:

(1) G(a) = f(a)− φn(a) = 0; and G(b) = f(b)− φn(b) = 0;
(2) G′(a) = G′′(a) = · · · = G(n)(a) = 0

From (1), we know that by Rolle’s Theorem, there must be a point c1 between a and b that
G′(c1) = 0, and from (2) we can conclude that there must be a

c2 in (a, c1) such that G(2)(c2) = 0,
c3 in (a, c2) such that G(3)(c3) = 0,

...
cn+1 in (a, cn) such that G(n+1)(cn+1) = 0

We know that the (n+ 1)th derivative of φn(x) is

φ(n+1)
n (cn+1) = P (n+1)

n (x) +K · (n+ 1)! = K · (n+ 1)!

and by Eq. (A) we have

G(n+1)(cn+1) = 0 = f (n+1)(cn+1)−K · (n+ 1)!

K = f (n+1)(cn+1)
(n+ 1)!
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