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Even can we find the right pdf model for a whole population of the data, we may never find
the true parameters for such models. We construct different kinds of functions to evaluate the
parameters, which we call point estimators. We feed sample data to the function and get the
result, i.e., estimate(s), for the true parameter(s). If we have different set of samples, apparently
we would have different estimates.

The spread out of the estimates is itself a probability density. If the function/estimator is
simply the sum or mean of the sample, we know from the CLT that estimates will follow a
normal distribution pattern, with a mean of µ and variance of σ/

√
n.

When new data sample flows in, it presents an opportunity to check and update our estimates
to catch up with the development of whole data conveyed by such new information. Do we need
to combine “old” and “new” data and use bothersome maximum likelihood or moments methods
to re-calculate the estimates? Yes, you can do that. But we have a better solution with help from
Bayesian estimation, and substitution of normal with new pdf model for parameter estimates.

1 Review of Gamma Function

Gamma function is denoted as,

Γ(r) =
∫ ∞

0
yr−1e−y dy

Gamma function has some interesting features. Γ(1) = 1, Γ(r) = (r− 1)Γ(r− 1), and if r is
an integer, then Γ(r) = (r − 1)!

Gamma distribution function is different from Gamma function, though the names are a bit
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confusing. A random variable Y is said to have the gamma pdf with parameters r and λ if

fY (y) = λr

Γ(r)︸ ︷︷ ︸
constant

yr−1e−λy, y > 0

Also, as explained in previous notes, E(Y ) = r/λ and Var (Y ) = r/λ2. We need to differen-
tiate the gamma pdf to get the mode: (r − 1)/λ.

2 Brief Introduction to Beta pdf

2.1 Beta Function

The beta function, also called the Euler integral of the first kind, is a special function that is
closely related to the gamma function and to binomial coefficients. It is defined by the integral

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt

A key property of the beta function is its close relationship to the gamma function:

B(x, y) = Γ(x)Γ(y)
Γ(x+ y)

Proof To derive this relation, write the product of two factorials as

Γ(x)Γ(y) =
∫ ∞
u=0

e−uux−1 du ·
∫ ∞
v=0

e−vvy−1 dv

=
∫ ∞
u=0

∫ ∞
v=0

e−u−vux−1vy−1 dv du

Let u = zt and v = z − zt to produce

Γ(x)Γ(y) =
∫ ∞
z=0

∫ 1

t=0
e−z(zt)x−1(z(1− t))y−1z dt dz . du=zdt

=
∫ ∞
z=0

e−zzx+y−1 dz ·
∫ 1

t=0
tx−1(1− t)y−1 dt

= Γ(x+ y) ·B(x, y)

Dividing both sides by Γ(x+ y) gives the desired result.
Because of its relationship to gamma function, beta function can also be denoted as binomial

coefficients. When x, y are positive integers,

B(x, y) = (x− 1)!(y − 1)!
(x+ y − 1)! = x+ y

xy
·
(
x+ y

x

)−1

We can develop some interesting features based on binomial coefficients:

B(x+ 1, y) = x

x+ y
· (x− 1)!(y − 1)!

(x+ y − 1)! = x

x+ y
·B(x, y)
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and
B(x, y + 1) = y

x+ y
· (x− 1)!(y − 1)!

(x+ y − 1)! = y

x+ y
·B(x, y)

and
B(x, y) = B(x+ 1, y) +B(x, y + 1)

Sometimes we also encounter incomplete beta function, a generalization of the beta function,
which is defined as (we use α, β instead of x, y here)

B(x;α, β) =
∫ x

0
tα−1(1− t)β−1 dt

When x = 1, the incomplete beta function coincides with the complete beta function. Incom-
plete beta function and its related variants have many applications, but we won’t dig further
since it’s not the topic of this note.

2.2 Beta Distribution

Caution! Beta distribution is related to beta function, but they are different.
According to Wikipedia, in probability theory and statistics, the beta distribution is a

family of continuous probability distributions defined on the interval [0, 1] parameterized by
two positive shape parameters, denoted by α and β, that appear as exponents of the random
variable and control the shape of the distribution. The generalization to multiple variables is
called a Dirichlet distribution.

Beta distribution widely used as a probability density function (pdf) for a target pa-
rameter θ, when θ ∈ [0, 1]

fΘ(θ) = Γ(α+ β)
Γ(α)Γ(β) · θ

α−1(1− θ)β−1 = 1
B(α, β) · θ

α−1(1− θ)β−1

By convention, people use “Beta” to denote beta distribution. For example, if it’s about the
parameter X, denoted as X ∼ Beta(α, β).

Look at the second part of the distribution θα−1(1− θ)β−1, does it ring a bell to you? Yes,
it’s the inner part of the beta function B(α, β). So the 1/B(α, β) is here to make sure that
when integrated from 0 to 1, the total probability of fΘ(θ) sums to 1.

Corresponding to pdf, we must have a cdf for beta distribution,

FΘ(θ) =
∫ θ

0

1
B(α, β) · θ

α−1(1− θ)β−1 dθ = 1
B(α, β)︸ ︷︷ ︸
constant

·
∫ θ

0
θα−1(1− θ)β−1 dθ︸ ︷︷ ︸

integral

The integral part of the right-hand side is in fact an incomplete beta function, so cdf can
also be written as

FΘ(θ) = B(θ;α, β)
B(α, β) = Iθ(α, β)
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here Iθ(α, β) is called regularized incomplete beta function.

Mean of beta distribution:
E(θ) = α

α+ β

Proof From the definition, we have

E(θ) =
∫ 1

0

θ

B(α, β) · θ
α−1(1− θ)β−1 dθ

= 1
B(α, β)

∫ 1

0
θα(1− θ)β−1 dθ . integral part is beta w/ α+1

= B(α+ 1, β)
B(α, β)

= α

α+ β
· B(α, β)
B(α, β)

= α

α+ β

Variance of beta distribution:

σ2 = αβ

(α+ β)2(α+ β + 1)

Proof We start by finding E(θ2). We know that

E(θ2) = 1
B(α, β)

∫ 1

0
θα+1(1− θ)β−1 dθ = B(α+ 2, β)

B(α, β)

Applying binomial coefficients,

B(α+ 2, β)
B(α, β) = α(α+ 1)

(α+ β + 1)(α+ β) ·
B(α, β)
B(α, β) = α(α+ 1)

(α+ β + 1)(α+ β)

then by equation σ2 = E(θ2)− µ2,

σ2 = α(α+ 1)
(α+ β + 1)(α+ β) −

α2

(α+ β)2

= α(α+ 1)(α+ β)− α2(α+ β + 1)
(α+ β)2(α+ β + 1)

= αβ

(α+ β)2(α+ β + 1)

Mode of beta distribution: the mode is the value of θ at which fΘ(θ) achieves its
maximum in scope of [0, 1].

θ = α− 1
α+ β − 2
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Proof We use first derivative to find it:

fΘ(θ) = 1
B(α, β) · θ

α−1(1− θ)β−1

f
(1)
Θ (θ) = d

dx
θα−1(1− θ)β−1

= (α− 1)θα−2(1− θ)β−1 − θα−1(β − 1)(1− θ)β−2

= θα−2(1− θ)β−2[(α− 1)(1− θ)− (β − 1)θ]

If f (1)
Θ will be at 0, it must be the term in the brackets at 0, so we have,

(α− 1)(1− θ)− (β − 1)θ = 0

θ(α− 1 + β − 1) = α− 1

θmode = α− 1
α+ β − 2

An Illustration of mean and mode of a beta distribution shows below. Dr. Bognar at
the University of Iowa built the calculator for Beta distribution, which is presenting the beta
distribution in an aesthetically pleasant way.

Figure 1: Mean (solid red) and mode (dotted green) of a beta distribution

Comment The other way around: using µ and σ2 to find α, β 2.
First of all, notice that:

αβ

(α+ β)2 = α

α+ β
·
(

1− α

α+ β

)
= µ(1− µ)

This means the variance can be expressed in terms of the mean as

σ2 = µ(1− µ)
α+ β + 1

2David Robinson contributed this solution on StackExchange.
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so we have α+ β as
α+ β = µ(1− µ)

σ2 − 1

As a result, forms to calculate each parameter

α = µ(α+ β) and β = (1− µ)(α+ β)

3 Bayes Theorem and Inference

Statistical inference is the process of deducing properties about a population or probability
distribution from data. Bayesian inference is just the process of deducing properties about
a population or probability distribution from data using Bayes’ theorem.

Much talk about Bayes’ theorem has been made, so I posted a picture here for refreshment.

Figure 2: A blue neon sign showing the simple statement of Bayes’ theorem

Example 1 We used to apply Bayes to point estimates. Suppose a call center log shows
that the incoming call comes in at a rate of 10 calls per unit time (5 min. interval) for 75% of
the time, and 8 for the rest 25% of the time.

A sample was taken recently to show the rate is 7 however. How would this discovery change
our estimates? We know Poisson is best suitable to model the phone call frequency,

pX(k) = e−λ
λk

k!

Under assumption of 10 calls, the probability of getting 7 per unit is: e−10 107

7! , under 8 is e−8 87

7! .
We can use Bayes theorem to update our previous estimates:

P(λ=10) =
75% · e−10 107

7!
75% · e−10 107

7! + 25% · e−8 87

7!
= 0.659

P(λ=8) = 1− P(λ=10) = 0.341

Comment Up to now, when we talk about probability parameters, we are talking about
“values” or “numbers”. What if we are not so sure about the parameters, and what we come up
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with, instead of just a few numbers at our best guess, is a probability distribution of a parameter
of a probability distribution?

For example, the baseball batting result can be represented with a binomial distribution.
The hitting rate p is the only parameter of this pdf, and according to historical record, we
estimate p = 0.27 with a range from 0.21 to 0.35. We use beta distribution to model the pdf of
this parameter p.

Figure 3: Parameter is no longer a number but a pdf curve

But can Bayes apply to a parameter pdf?
The answer is “Yes!” First of all, let’s see the equation,

Figure 4: Bayes Equation - one of the most famous equations in the world of Statistics

Please be noted that we are talking about the probability density function of parameter,
here the θ, not the variable from samples or population itself. Bear this in mind.

P (θ): this is the pdf before we see new evidence (data). We refer to it as the “prior
distribution”. There are some rules to pick the right model for this pdf, as we will discuss
later. This is a pdf of data pdf model parameters. Since it’s also a pdf, it must come with
its own “parameters”, DO NOT mix them with the parameters of the data variable pdf! It
turns out that the “parameters” of the pdf of parameters are not very important. Sometimes
it comes from historical data, sometimes it comes from empirical estimate, and sometimes we
can even use a uniform pdf instead. Why? Because prior distribution will evolve and catch up
with newly fed data anyway!

P (X | θ): this is the sampling probability. Interpreting in layman words, it is the probability
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of getting certain x if we pick a value for θ. To be clearer, this probability is calculated based
on pdf of variable, NOT the pdf of θ.

P (θ | X): this is the pdf after we apply the Bayes theorem. We refer to it as the “posterior
distribution”. Same as prior distribution, it is still a pdf of parameters.

The denominator part (integral) is called the marginal pdf of X. For a specific x, we iterate
every possible θ and pair it with x to find the probability for each pair. Integrating together,
we get a constant called “normalizing constant”, and this constant is to make sure the total
amount is equal to 1, the condition for P (θ | X) still being a pdf.

The work involved in calculating the integral part is usually tedious and messy, and some-
times people are only care about the proportional relationship between P (θ | X) and nominator.
So sometimes we can see people just omit the denominator and write the equation as,

P (θ | X) ∝ P (X | θ) · P (θ)

∝ means “proportional to”.
Wait..., we’ve seen Bayes works from point estimate to point estimate, but how come Bayes

also works fine with pdf?

Figure 5: Bayes theorem works fine with pdf

Figure 5 shows that in pdf scenario Bayes still works from point to point. But as we iterate
all points/numbers in a pdf domain, what we get as a result range is exactly a group of new
points corresponding to the original feed, thus a new form of pdf.

4 Conjugate Prior

What or which prior distribution shall we use to model the parameter pdf? Is there any
way to deduce some certain prior distributions from parameters? I haven’t found answers to
this question, but people do have preference on choosing which distribution as prior.

Let’s look at figure 4 again. P (X | θ) is, when we hold X fixed and iterate θ all around the
scope, a curve of probability! When we differentiate it to get the θ̂, this is called the maximum
likelihood estimator. The curve itself, is called likelihood function. If we have a sample
of size 1, the likelihood function is the variable pdf. If we have a sample of multiple elements,
the likelihood function is the variable pdf to the power of multiple number.
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For some likelihood functions, if you choose a certain prior, the posterior ends up being in
the same kind of distribution as the prior. Such a prior then is called a Conjugate Prior. We
have the following list of pdf that are conjugate prior to different likelihood/variable pdf(s).

likelihood/variable prior posterior

Bernoulli Beta Beta
Binomial Beta Beta
Negative Binomial Beta Beta
Geometric Beta Beta

Poisson Gamma Gamma
Exponential Gamma Gamma

Normal Normal Normal

Table 1: Conjugate prior list

A sample is worth a thousand words.
Example 2 · youtube log shows that for each of your post approximately 3% of your

viewers will like it, but no more than 6%.
We know this rate, say, θ, would be better represented by a pdf. We also want to update

this θ to cope with the latest data we can observe from time to time. As the variable pdf is
obviously a binomial distribution, we decide to use a beta pdf to model the value of θ.

We will discuss how to pick α, β to construct this beta pdf for θ, but for now let’s just use
these Greek letters,

fΘ(θ) = 1
Beta(α, β)θ

α−1(1− θ)β−1

Now we have a sample of size n on your lastest post. It shows that among n viewers k likes
your new post. Apparently, what ever the θ is, the probability that k out of n likes your post is

PX(k | θ) =
(
n

k

)
θk(1− θ)n−k

How do we update the beta pdf? Well, we use the famous Bayes Equation as illustrated on
figure 4! Let gΘ(θ) denote posterior distribution,

gΘ(θ) = PX(k | θ)fΘ(θ)∫ 1

0
PX(k | θ)fΘ(θ) dθ

=
(n
k

)
Beta(α, β)−1 · θk+α−1(1− θ)n−k+β−1∫ 1

0

(
n

k

)
Beta(α, β)−1 · θk+α−1(1− θ)n−k+β−1 dθ

= θk+α−1(1− θ)n−k+β−1∫ 1

0
θk+α−1(1− θ)n−k+β−1 dθ

. (n
k)Beta(α,β)−1 constant cancelled out

= 1
Beta(k + α, n− k + β) · θ

k+α−1(1− θ)n−k+β−1

What do you find? The result is simply add k to α, and add n − k to β. Now you see the
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power of conjugate prior. Instead of tedious computation, we know the rule and can write the
posterior pdf directly!

Comment We said we will discuss how to pick values for α, β for the prior, now let’s do
it. In practice, we usually equal the expected value “mean” of beta pdf α/(α+ β) to our safest
bet on the parameter. so we have α/(α+ β) = 0.03.

Furthermore, if we have both α > 1 and β > 1, we know the beta pdf is showing a bell curve
feature. As a rule of thumb, 3σ radius around mean is enough to encompass the whole range
of our guess. so we have 3σ = 6%− 3% = 3%, or σ = 1%.

We’ve discussed how to find α, β from µ, σ. Rounding up, we have α = 9, β = 281.

Example 3 Let’s try another example on gamma pdf.
The random variable X is from a Poisson distribution. Usually we use letter λ as the unit

rate for such distribution, but here we use θ instead. If we want to model the probability of k
in a total of n units, the rate would be nθ:

p(k) = e−nθ(nθ)k

k!

In reality, we must have some prior experience on the values of theta, and can use that estimate
to pick the right parameter values for λ and r to construct a gamma pdf. But here for illustration
purpose only, let’s omit the process of number picking and directly assume the prior gamma
pdf for parameter θ be,

fΘ(θ) = λr

Γ(r)θ
r−1e−λθ

then we have

p(k)fΘ(θ) = e−nθ(nθ)k

k!
λr

Γ(r)θ
r−1e−λθ

= nk

k!
λr

Γ(r)θ
k+r−1e−(λ+n)θ

The posterior distribution is

gΘ(θ) =
nk

k!
λr

Γ(r)θ
k+r−1e−(λ+n)θ∫∞

0
nk

k!
λr

Γ(r)θ
k+r−1e−(λ+n)θ dθ

=
nk

k!
λr

Γ(r)
nk

k!
λr

Γ(r)
∫∞

0 θk+r−1e−(λ+n)θ dθ
· θk+r−1e−(λ+n)θ

= 1∫∞
0 θk+r−1e−(λ+n)θ dθ

· θk+r−1e−(λ+n)θ

Let t = (λ+ n)θ, the above denominator is transformed to
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∫ ∞
0

θk+r−1e−(λ+n)θ dθ =
∫ ∞

0

(
t

λ+ n

)k+r−1
e−t

1
λ+ n

dt

= 1
(λ+ n)k+r

∫ ∞
0

tk+r−1e−t dt . Integral part is a gamma func.

= Γ(k + r)
(λ+ n)k+r

Posterior distribution can therefore be written as:

gΘ(θ) = (λ+ n)k+r

Γ(r) · θk+r−1e−(λ+n)θ

a neat transformation from conjugate prior fΘ(θ).

5 MAP and Bayesian Estimation

Once we have a posterior distribution, how can we find our estimate for the parameter? One
approach, similar to using the likelihood function to find a maximum likelihood estimator, is
to differentiate the posterior, in which case the value for dgΘ / dθ = 0. θ value at this point is
called “mode”. The way to find mode of posterior has a term: maximum a posteriori probability
(MAP) estimate.

Another way is based on minimizing risk associated with estimated θ̂, where the risk is the
expected value of a loss function. Two of the most frequently used loss functions are:

L(θ̂, θ) =


∣∣∣θ̂ − θ∣∣∣
(θ̂ − θ)2

then
Risk =

∫
θ

L(θ̂, θ)gΘ(θ) dθ

θ̂ is picked from the domain of posterior once we have the minimum risk. It can be proved that
for absolute loss function θ̂ = median, and for square θ̂ = mean. [LM12, p. 339]

- 11 -



Mathematical Notes 5.8 Probability Density of Parameters and Bayesian Estimation

Reference

[LM12] R.J. Larsen and M.L. Marx. An Introduction to Mathematical Statistics and Its Ap-
plications. Prentice Hall, 2012. isbn: 9780321693945. url: https://books.google.com.
hk/books?id=tZdbRAAACAAJ.

- 12 -

https://books.google.com.hk/books?id=tZdbRAAACAAJ
https://books.google.com.hk/books?id=tZdbRAAACAAJ

	Review of Gamma Function
	Brief Introduction to Beta pdf
	Beta Function
	Beta Distribution

	Bayes Theorem and Inference
	Conjugate Prior
	MAP and Bayesian Estimation

