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A Weak Proof of the Central Limit Theorem
with Moment Generating Function
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Central Limit Theorem (CLT) is one of the two most important theorems in statistics (the
other is the Large Number Theorem). In this note, the theorem of moment generating function
(mgf ) is used to prove the CLT without proving the mgf theorem itself. So we call this a
weak proof. Notice that mgf may not always exist for all functions, so sometimes people use
characteristic function instead to prove CLT.

1 Moment Generating Function

Definition
Let W be a random variable. The moment generating function (mgf) for W is

denoted MW (t) and given by

MW (t) = E(etW ) =



∑
all k

etW pW (k) if W is discrete

∫ ∞
−∞

etW fW (w) dw if W is continuous

at all values of t for which the expected value exists.

In short, mgf is the expected value of etW for the generating function that has the pdf of
pW (k) or fW (w), in discrete or continuous way, respectively. Sometimes, due to the property
of the function, the expected value may go to infinity, and we say under such situation the mgf
does not exist.

An illustration of mgf for binomial random variable X with pdf:

pX(k) =
(
n

k

)
pk(1− p)n−k

is
MX(t) = E(etx) =

n∑
k=0

etk
(
n

k

)
pk(1− p)n−k

=
n∑
k=0

(
n

k

)
(pet)k(1− p)n−k

= (1− p+ pet)n

1
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Another example is for Poisson random variable:

pX(k) = e−λλk

k!

and
MX(t) = E(etx) =

∞∑
k=0

etk
e−λλk

k!

= e−λ
∞∑
k=0

(etλ)k

k!

= e−λeλe
t

= e−λ+λet

2 Some Important Features of mgf

mgf Theorem
Suppose that W1 and W2 are random variables for which MW1(t) = MW2(t) for

some interval of t’s containing 0. Then fW1(w) = fW2(w).

We will leave the proof of this theorem to further notes, but use this result directly to prove
CLT.

That being said, we can still get some feeling about this theorem by intuition, for we know
that

M
(0)
W (0) =

∫
e0wfW (w) dw =

∫
fW (w) dw = 1

and
M

(1)
W (0) =

∫
we0wfW (w) dw =

∫
wfW (w) dw = E(W )

and
M

(2)
W (0) =

∫
w2e0wfW (w) dw =

∫
w2fW (w) dw = E(W 2)

. . .

M
(n)
W (0) =

∫
wne0wfW (w) dw =

∫
wnfW (w) dw = E(Wn)

So we know that if two function’s mgf are the same, then their expected values for random
variables itself and higher orders are also the same. And since expected value, variance and other
properties of a function can be represented by its mgf, we can almost tell that the two functions
will behave same. The missing piece of this intuitive understanding is obvious, however: it does
not rule out the possibility that why two different functions cannot generate the same mgf.

We move on to the next two important properties of mgf.

lemma a. Let W be a random variable with mgf MW (t). Let V = aW + b. Then

MV (t) = ebtMW (at)
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Proof : we prove the lemma for continuous function, the discrete function is the same.

MV (t) =
∫
et(aW+b)fV (v) dv

=
∫
et(aW+b) 1

|a|
fW (w)a dw

=
∫
et(aW+b)fW (w) dw

= ebt
∫
eatW fW (w) dw

= ebtMW (at)

lemma b. Let W1,W2, . . . ,Wn be independent random variables with mgfs
MW1(t),MW2(t), . . . ,MWn(t), respectively. Let W = W1 +W2 + · · ·+Wn. Then

MW (t) = MW1(t) ·MW2(t) · · ·MWn(t)

Proof : In order to prove lemma b., we only need to prove that MW (t) = MW1(t) ·MW2(t)
if W = W1 +W2. Because W1 and W2 are independent variables, we have pdf and cdf for W :

fW (w) = fW1(w1)fW2(w2) and FW (w) =
∫∫

fW1(w1)fW2(w2) dw1 dw2

and mgf for W :

MW (t) = E(et(W1+W2)) =
∫∫

et(W1+W2)fW1(w1)fW2(w2) dw1 dw2

=
∫
etW1fW1(w1) dw1 ·

∫
etW2fW2(w2) dw2

= MW1(t) ·MW2(t)

3 Normal Distribution Function

pdf of a normal distribution

fY (y) = 1√
2πσ

exp
[
−1

2

(
y − µ
σ

)2
]

, −∞ < y <∞

Depending on the values of µ and σ, the pdf curve can take different shapes. When µ = 0
and σ = 1, the normal distribution becomes 1√

2π
· e−t2/2 and is called standard.
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Figure 1: normal curves with different µ and σ

The adding up of pdf fY (y) to 1 needs some polar coordinates integral techniques. But first
of all, let’s see if we can simplify this function for the integration purpose. We can tell from
Figure 1 above that µ determine the location of the curve, but has nothing to do with the shape
itself. So let µ = 0 won’t lose generosity to the calculation while gives us a huge convenience.

Proof : the basic idea is that we square the cdf of fY (y), if the result equals 1, then cdf
must be 1. We re-write the pdf as follows (deleting the µ part):

fY (y) = 1√
2πσ

exp
[
−1

2

(
y

σ

)2
]

If we square the cdf of a function, the mathematical meaning is to find the joint density in
an xy-plane, where x and y axes have the same pdf.

cdf2 = 1√
2πσ

∫ ∞
−∞

e−
x2

2σ2 dx · 1√
2πσ

∫ ∞
−∞

e−
y2

2σ2 dy = 1
2πσ2

∫ ∞
−∞

∫ ∞
−∞

e−
1

2σ2 (x2+y2) dx dy

Let x = r cos θ and y = r sin θ, then dx dy = r dr dθ, and

1
2πσ2

∫ ∞
−∞

∫ ∞
−∞

e−
1

2σ2 (x2+y2) dx dy = 1
2πσ2

∫ 2π

0

∫ ∞
0

e−
r2

2σ2 r dr dθ

= 1
2πσ2

∫ ∞
0

e−
r2

2σ2 r dr

∫ 2π

0
dθ

= 1
2πσ2 · σ

2 · 2π

= 1

mgf of a normal distribution

MY (t) = exp
[
µt+ σ2t2

2

]

and

MY (t) = e
t2
2 when µ = 0 and σ = 1
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Calculating process of MY (t):

MY (t) = E(ety) = 1√
2πσ

∫ ∞
−∞

ety exp
[
−1

2

(
y − µ
σ

)2
]
dy

= 1√
2πσ

∫ ∞
−∞

exp
[
−y

2 − 2µy + µ2 − 2σ2ty

2σ2

]
dy

Using a little technique, we can re-arrange the terms in the brackets as

y2 − (2µ+ 2σ2t)y + (µ+ σ2t)2 − (µ+ σ2t)2 + µ2

= [y − (µ+ σ2t)]2 − σ4t2 + 2µtσ2

The last two terms involves no y, so can be moved out of the integral

MY (t) = exp
(
µt+ σ2t2

2

)
1√
2πσ

∫ ∞
−∞

exp

−1
2

[
y − (µ+ tσ2)

σ

]2
 dy

︸ ︷︷ ︸
equals 1

The latter part is still the cdf of a normal curve with µ′ = (µ+ tσ2), so the mgf is shortened to
the first part of the equation.

4 Central Limit Theorem

CLT: Let Y1, Y2, . . . , Yn be independent and identically distributed random variables
with E(Yi) = µ and V ar(Yi) = σ2 (both <∞). Define

Un =

n∑
i=1

Yi − nµ

σ
√
n

= Y − µ
σ/
√
n

where Y = 1
n

n∑
i=1

Yi

Then the distribution function of Un converges to the standard normal distribution func-
tion as n→∞. That is, for all u (u is the value that variable Un takes)

lim
n→∞

P (Un 6 u) =
∫ u

−∞

1√
2π
e−

t2
2 dt

The ordinary language interpretation of the CLT is that, no matter what the pdf is for the
original function fY (y), the sum or arithmetic average of Yi, when i is big enough, 1 tends to
match the normal distribution.

Why Un?
Un has a strange looking compared to sum or average of Yi. But if the sum or average of Yi

has already followed the normal distribution, why should we construct Un in such an awkward
1By convention, i > 30 will give us a pretty decent approximation.
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looking way to bring out the CLT? The reason is for standardization. 2 Let’s presume Yi
follows normal distribution for the time being, then the sum or average would have an expected
value and variance as

E

(
n∑
i=1

Yi

)
= E(Y1) + E(Y2) + · · ·+ E(Yn) = nµ

and [larsen2012introduction]

V

(
n∑
i=1

Yi

)
= V (Y1) + V (Y2) + · · ·+ V (Yn) = nσ2

or
E(Y ) = 1

n
[E(Y1) + E(Y2) + · · ·+ E(Yn)] = µ

and
V (Y ) = 1

n2 [V (Y1) + V (Y2) + · · ·+ V (Yn)] = σ2

n

Conclusion: variable Un is constructed in such a way that it always has µ = 0 and σ = 1, a
standard form easy for analysis and calculation, where simplified normal distribution probability
e−t

2/2 are available everywhere.
Before proving the theorem, we also need a lemma about the mgf:

lemma c.
mgf can by approximated by polynomial. If we use Taylor’s Theorem (here Maclaurin

series, specifically), that

M(t) = M(0) +M ′(0)t+M ′′(0) t
2

2! + · · ·+M (n)(0) t
n

n! +M (n+1)(ξ) tn+1

(n+ 1)!

where 0 < ξ < t.
Lemma c gives us an alternative to find a variable’s mgf without knowing its pdf.

Proof of CLT:

Because Un = 1√
n

∑n
i=1 Yi − nµ

σ
, if let Zi = Yi − µ

σ
, we can write Un as:

Un = 1√
n

n∑
i=1

Zi

Since we know from the condition of the theorem that E(Yi) = µ and V ar(Yi) = σ2, then

E(Zi) = 0 and V (Zi) = 1

Zi is based on Yi, which in turn comes from the same population, so each and every Zi must
2Actually, we can never know the exact values of µ and σ of the total population. But how to find approximated

values are another topic.
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have the same pdf and mgf. Now we can re-write MUn(t) as

MUn(t) = M 1√
n

∑
Zi

(t)

= M∑Zi

(
t√
n

)
=
[
MZ1

(
t√
n

)]n
by lemma b.

but MZ1(t) can be written as a polynomial series by lemma c,

MZ1(t) = MZ1(0) +M ′Z1
(0)t+M ′′Z1

(ξ) t22 , where 0 < ξ < t

and because MZ1(0) = E(e0Z1) = E(1) = 1, and M ′Z1
(0) = E(Z1) = 0, the above series

reduces to

MZ1(t) = 1 +
M ′′Z1

(ξ)
2 t2, where 0 < ξ < t

as t is dummy variable here, it can be replaced by any other variables. If we replace it with
t/
√
n, then

MZ1

(
t√
n

)
= 1 +

M ′′Z1
(ξ′)

2

(
t√
n

)2
where 0 < ξ′ <

t√
n

Now we have an updated form for MUn(t):

MUn(t) =
[
1 +

M ′′Z1
(ξ′)

2

(
t√
n

)2
]n

=
[
1 +

M ′′Z1
(ξ′)t2/2
n

]n

Notice that as n→∞, ξ′ → 0, so M ′′Z1
(ξ′)→M ′′Z1

(0), and

M ′′Z1(0) = E(Z2
1 ) = V (Z1) + E(Z1)2 = 1

further reduce MUn(t) to

MUn(t) =
[
1 + t2/2

n

]n
where n→∞

which is a familiar form for e to the power of anything above n, and here comes our conclusion:

MUn(t) = e
t2
2

This is exactly the mgf of a normal distribution function with µ = 0 and σ = 1. Also be
noted that we didn’t use pdf of the generating function to reach the mgf, which is in line with
the CLT assertion that it applies to all functions no matter what pdf it is. So the proof.
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