
Oct. 10th 2021

Estimating Parameters:
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If a phenomenon is likely to be described by a kind of distribution function, we might want to
know the best parameters for the function. There’re two ways to estimate the parameters based
on a collection of samples, the method of maximum likelihood and the method of moments.

1 The Method of Maximum Likelihood

This method relies on an assumption. When we times together all probabilities of the
items in a sample of size n, we get the product of those probabilities as a function of unknown
parameter(s). The assumption is that the sample is best reflecting the population distribution,
thus what we get in the sample comes with the most likelihood in the population. So this
method is to find the parameter(s) that will give the maximum value of the product function.

1.1 First Derivative Test for Single

As a convention, we use L to denote the product of probabilities, and if there’s only one
unknown parameter, the task becomes finding the parameter when the first derivative of L or
lnL equals to 0.

Example (1): estimate λ of a Poisson distribution if a size of n sample is given.
We know a Poisson distribution is pX(k) = eλλk/k!, k = 0, 1, 2, . . . , so

L(λ) =
n∏
i=1

e−λ
λki

ki!
= e−nλλ

∑n

i=1 ki
1∏n

i=1 ki!

lnL(λ) = −nλ+
(

n∑
i=1

ki

)
lnλ− ln

n∏
i=1

ki!

and
d lnL(λ)

dλ
= −n+

n∑
i=1

ki/λ

If we use k to denote
n∑
i=1

ki/n, then λ = k when the above first derivative equals 0.

1.2 Partial Derivative Test for Double or More

If there’re two or more unknown parameters, it is simply a task of finding local extremes by
partial first derivative for all unknown variables.
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Example (2): suppose a random sample of size n is drawn, find µ and σ2 of a normal pdf.
We start by finding L and lnL:

L(µ, σ2) =
n∏
i=1

1√
2πσ

exp
[
−1

2
(yi − µ)2

σ2

]

= (2πσ2)−n/2 exp
[
− 1

2σ2

n∑
i=1

(yi − µ)2
]

and
lnL(µ, σ2) = −n2 ln

(
2πσ2

)
− 1

2σ2

n∑
i=1

(yi − µ)2

Now we can differentiate with µ and σ respectively:

∂ lnL(µ, σ2)
∂µ

= 1
σ2

n∑
i=1

(yi − µ)

and
∂ lnL(µ, σ2)

∂σ2 = − n

2σ2 + 1
2σ4

n∑
i=1

(yi − µ)2

A local maximum is where both partial derivatives are zero, so the next task is to find µ

and σ from below two equations:

1
σ2

n∑
i=1

(yi − µ) = 0 →
n∑
i=1

(yi − µ) = 0 →
n∑
i=1

yi − nµ = 0

− n

2σ2 + 1
2σ4

n∑
i=1

(yi − µ)2 = 0 → − nσ2 +
n∑
i=1

(yi − µ)2 = 0

so we have:

Estimator for Normal Distribution Given a sample of size n, estimated µ and σ2:

µ = 1
n

n∑
i=1

yi = y and σ2 = 1
n

n∑
i=1

(yi − y)2

1.3 When the Derivative Test Fails

Sometimes the derivative test just fails to produce the result for parameters, when a close
observation on order statistics technique kicks in.

Example (3): a size of n sample is obtained for a pdf fY (y; θ) = e−(y−θ), y > θ, find θ.
From the information above, we have

L(θ) =
n∏
i=1

e−(y−θ) = exp
[
−

n∑
i=1

yi + nθ

]
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and
lnL(θ) = −

n∑
i=1

yi + nθ

But when we differentiate lnL(θ), we get n, which is pointless for the test. Take a second look
at the equation above, we can see that in order to have lnL(θ), we need to make the θ as big as
possible. Taking into the account that θ must be less or equal to yi, the conclusion is θ = ymin.

2 The Method of Moments

This procedure for estimating parameters was proposed near the turn of the twentieth
century by British statistician, Karl Pearson. Suppose that Y is a continuous random variable
and that its pdf is a function of unknown parameters, θ1, θ2, . . . , θs. The expected value of its
moments can be listed as follows:

E(Y 1) =
∫ ∞
−∞

y1 · fY (y; θ1, θ2, . . . , θs) dy

E(Y 2) =
∫ ∞
−∞

y2 · fY (y; θ1, θ2, . . . , θs) dy

...

E(Y s) =
∫ ∞
−∞

ys · fY (y; θ1, θ2, . . . , θs) dy

Apparently, it’s an easy task of solving s parameters from s equations. By intuition, we can

approximate E(Y k) by 1
n

n∑
i=1

Y k, for k = 1, 2, . . . , s.

Example (4): find parameters r and p of a negative binomial distribution.
We have the function form

pX(k; p, r) =
(
k + r − 1

k

)
(1− p)kpr, k = 0, 1, 2, . . .

and
E(X) = r(1− p)

p
and Var (X) = r(1− p)

p2

So E(X2) is a straight forward calculation

E(X2) = Var (X) + E(X)2 = r(1− p)− r2(1− p)2

p2 = r(1− p)(1− r + rp)
p2

Two equations for the parameters (solution omitted):

1
n

n∑
i=1

ki = k = r(1− p)
p

1
n

n∑
i=1

k2
i = k2 = r(1− p)(1− r + rp)

p2
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3 Properties of Estimators - sample standard deviation

The method of maximum likelihood and moments do not always yield the same answer.
It comes naturally to people the question: which one should we use over the other? Or what
qualities should a “good” estimator have? No matter which method we are going to use, the
estimator, θ̂, is a function of random variables, let’s say Yi, of sample size n. As such, any θ̂ is
also a random variable, and usually has its own pdf, expected value and variance. We define an
estimator θ̂ is “unbiased” if E(θ̂) = θ for all θ.

It should be noted that it’s quite difficult to get the expected value and variance of θ̂ by
direct summation, since we don’t have its pdf on hand. However, we can go around this problem
by dividing θ̂ into the function of variables Yi, and conquering each and every expected value
and variance of Yi get us the desired result for E(θ̂).

Example (5): Given a random sample Y1, Y2, . . . , Yn from a normal distribution whose
parameters µ and σ2 are both unknown, the estimator for σ2 is

σ̂2 = 1
n

n∑
i=1

(Yi − Y )2

Use expected value to check if σ̂2 is unbiased.
First of all, we have two conclusions about Y :

(a) E(Y ) = E

(
1
n

n∑
i=1

Yi

)
= 1
n
· E(Y1 + Y2 + · · ·+ Yn) = E(Yi)

(b) Var (Y ) = Var
(

1
n

n∑
i=1

Yi

)
= 1
n2 Var (Y1 + Y2 + · · ·+ Yn) = 1

n
Var (Yi)

Now we write the θ̂ in function form to find the expected value as a function of real θ (here
the θ refers to σ2):

E(σ̂2) = E

[
1
n

n∑
i=1

(Yi − Y )2
]

= E

[
1
n

n∑
i=1

(Y 2
i − 2YiY + Y

2)
]

= E

[
1
n

(
n∑
i=1

Y 2
i − nY

2
)]

note:
n∑
i=1

Yi = nY

= 1
n

[
n∑
i=1

E(Y 2
i )− nE(Y 2)

]
note: E(Y 2) = Var (Y ) + E(Y )2 = 1

n
σ2 + µ2

= 1
n

[
n∑
i=1

(σ2 + µ2)− n
(
σ2

n
+ µ2

)]

= 1
n

[
nσ2 + nµ2 − σ2 − nµ2

]
= n− 1

n
· σ2

Since E(σ̂2) 6= σ2, we say σ̂2 is “biased”. The way to correct its “biasedness” is quite straight
forward, we simply times σ̂2 by n/(n− 1).
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By convention, this unbiased version of estimator in a normal distribution has a special
name, S2, and is referred to as the sample variance:

S2 = n

n− 1 ·
1
n

n∑
i=1

(Yi − Y )2 = 1
n− 1

n∑
i=1

(Yi − Y )2

A related concept is sample standard deviation, though E(S) 6= σ:

S =

√√√√ 1
n− 1

n∑
i=1

(Yi − Y )2
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4 Common Distributions and Their Properties

Distribution Function Mean Variance M.G.F.

Uniform f(y) = 1
θ2 − θ1

; θ1 6 y 6 θ2
θ1 + θ2

2
(θ1 + θ2)2

12
etθ2 − etθ1

t(θ2 − θ1)

Normal
f(y) = 1√

2πσ
exp
[
−1

2
(yi − µ)2

σ2

]
−∞ < y <∞

µ σ2 exp
(
µt+ t2σ2

2

)

Exponential λe−λy; y > 0 1
λ

1
λ2

1
1− t/λ

Gamma
fY (y) = λr

Γ(r)y
r−1e−λy, y > 0

where Γ(r) =
∫ ∞

0
yr−1e−y dy

r

λ

r

λ2
1

(1− t/λ)r

Binomial
p(k) =

(
n

k

)
pk(1− p)n−k

k = 0, 1, 2, ...
np np(1− p) [pet + (1− p)]n

Hpyer
Geometric

p(k) =

(
r

k

)(
N − r
n− k

)
(
N

n

)
k = 0, 1, . . . , n if n 6 r

k = 0, 1, . . . , r if n > r

nr

N

np(1− p)
(
N − n
N − 1

)
let p = r

N

Geometric p(k) = p(1− p)k−1; k = 1, 2, ... 1
p

1− p
p2

pet

1− (1− p)et

Negative
Binomial

p(k) =
(
k − 1
r − 1

)
pr(1− p)k−r;

k = r, r + 1, ...

r

p

r(1− p)
p2

[
pet

1− (1− p)et

]r

Poisson p(k) = λke−λ

k! ; k = 0, 1, 2, ... λ λ exp
[
λ(et − 1)

]
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