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1 Definition

In the binomial distribution where n is quite large, it’s usually a tedious job to
calculate k! when computer was not available back in the 18th to early 20th century.
So a French mathematician Simeon Denis Poisson came up with a approximation,
which is using continuous function to approximate the discrete binomial distribu-
tion, and proves to be quite well with a small p.

Poisson Limit:
Suppose X is a binomial random variable, where

Px(k) =
(
n

k

)
pk(1− p)n−k, k = 0, 1, 2 . . . , n

If n→∞ and p→ 0, then (let λ = np)

Px(k) = e−λλk
k!

2 How to get the Poisson Limit (proof)?

Use λ

n
= p to rewrite the binomial equation, and when n→∞:

Px(k) =
(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

= n!
k!(n− k)! ·

λk

nk
·
(

1− λ

n

)−k
·
(

1− λ

n

)n

= n!
k!(n− k)! ·

λk

nk
· nk

(n− λ)k ·
(

1− λ

n

)n

= λk

k! ·
n!

(n− k)!(n− λ)k ·
(

1− λ

n

)n

1



Mathematical Statistics

We know that lim
x→∞

(
1 + 1

x

)x
= e. If we let −λ

n
= 1
x

, then n = −λx, and we
get the equation:

lim
n→∞

(
1− λ

n

)n
= lim

x→∞

(
1 + 1

x

)−λx
= e−λ

Furthermore,

n!
(n− k)!(n− λ)k = n(n− 1) · · · (n− k + 1)

(n− λ)k

Because λ is constant (this is the approximation part of Poisson Limit!), as n→∞,
the above equation tends to be 1 (proved).

Notice: Poisson approximation is turning a discrete distribution to a continuous
one.

3 E(X) and V ar(X)

Lemma 1: E(X) of a binomial distribution

E(X) = np = λ

Proof:

E(X) = k · Px(k) = k · n!
k!(n− k)! · p

k(1− p)n−k (1)

= np · (n− 1)!
(k − 1)!(n− k)! · p

k−1(1− p)n−k (2)

Because the factorial of a negative integer is not defined, so what’s the result of
(k − 1)!? Fortunately, if we look at eq.(1) closely, we can see that when k = 0, the
first term becomes zero and we can proceed with k = 1 and other larger integers
directly.

Let j = k − 1,m = n− 1, then eq.(2) becomes

E(X) = np · m!
j!(m− j)! · p

j(1− p)m−j

= np ·
(
m

j

)
pj(1− p)m−j

= np
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Lemma 2: Var(X) of a binomial distribution

V ar(X) = np(1− p) = λ(1− p)

Proof:
The whole point here is to find E(X2), then use the equation V ar(X) = E(X2)−

µ2 (µ is another name for E(X)) to find V ar(X).

E(X2) = k2 · n!
k!(n− k)! · p

k(1− p)n−k

= np · k · (n− 1)!
(k − 1)!(n− k)! · p

k−1(1− p)n−k

= np · (1 + (k − 1)) · (n− 1)!
(k − 1)!(n− k)! · p

k−1(1− p)n−k

= eq.(2) + np · (k − 1) · (n− 1)!
(k − 1)!(n− k)! · p

k−1(1− p)n−k

= eq.(2) + n(n− 1)p2 · (n− 2)!
(k − 2)!(n− k)! · p

k−2(1− p)n−k

= np+ (np)2 − np2

V ar(X) = np+ (np)2 − np2 − (np)2

= np(1− p)

Now let’s see how close are the expected value and variance of a Poisson distri-
bution be to the binomial distribution:

Theorem: E(X) and Var(X) of Poisson Distribution

For a Poisson Distribution Px(k) = e−λλk
k! , k = 0, 1, 2, · · ·

E(X) = λ, V ar(X) = λ
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Proof :

E(X) = k · Px(k)

= k ·
∞∑
k=0

e−λλk
k!

= λe−λ ·
∞∑
k=1

λk−1

(k − 1)!

= λe−λeλ (Taylor Series)

= λ

V ar(X) = E(X2)− µ2

= k2 ·
∞∑
k=0

e−λλk
k! − λ2

= λe−λ ·
∞∑
k=1

kλk−1

(k − 1)! − λ
2

= λe−λ ·
∞∑
k=1

((k − 1) + 1)λk−1

(k − 1)! − λ2

= λe−λ ·
∞∑
k=1

(
(k − 1)λk−1

(k − 1)! + λk−1

(k − 1)!

)
− λ2

= λe−λ ·
(
λ ·

∞∑
k=2

λk−2

(k − 2)! +
∞∑
k=1

λk−1

(k − 1)!

)
− λ2

= λe−λ(λeλ + eλ)− λ2

= λ2 + λ− λ2

= λ

Another proof way is by mgf :
First of all, mgf of the Poisson distribution

Mk(t) = E(etk) = etk ·
∞∑
k=0

e−λλk
k!

= e−λ ·
∞∑
k=0

etkλk
k!

= exp[−λ+ λet]

(1) First moment of mgf : M (1)
k (t) = exp[−λ+ λet] · λet;

(2) Second moment of mgf : M (1)
k (t) = exp[−λ+ λet] · (λ2e2t + λet).

Let t = 0, we have E(X) = λ, E(X2) = (λ2 + λ) and V ar(X) = λ.
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From above analysis, we can tell that the E(X) is same for both binomial and
Poisson distributions, with the only difference at its variance by np2, which also
means that the smaller the p, the more precise the Poisson approximation.

4 Waiting period probability

An interesting application of Poisson distribution is to find the waiting period
probability, in another word, to determine how long before the next occurrence of
events takes place.

Binomial distribution has a unique feature that, once we know the probability
p, then the expected value is simply p times trial number n. On a time axis, we can
set the probability within a unit time as λ, the elapsing of time is like traversing
multiple time units y, and the total E(X) is just λy. Staying with this notation,
the Poisson probability for studying waiting time becomes:

Px(k) =
∞∑
k=0

e−λy(λy)k
k!

Caution: No Px(0) directly!
It’s quite straight-forward to find the probability that during time y, there’s no

event happening:

Px(0) = e−λy(λy)0

0! = e−λy

Wait a minute, what does this mean? Without referring to further reasoning, we
know that at time 0, Px(0) = 1, but as y increases (as time goes by), this function
will yield less and less value until to 0 in the end. In another word, this function
is decreasing, and a decreasing function is not a good cdf, if it is still regarded as a
cdf, very difficult to deal with when we want some pdf with respect to time variable
y.

Tips: Happen is Happen, no matter one or more!
Now let’s take a look at “1 − Px(0)”. It stands for the probability that within

time y, some events happen. It’s not Px(1), not Px(2) or any other numbers that x
may take, but the collection of all probabilities for x = 1, 2, . . . ,∞.

Also, you don’t need further calculation to find out that at time 0, no event
would happen, so the probability equals 0, but as y elapses, the probability grows
and eventually reaches 1, which means that something about to happen will happen
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in the end.
So the cdf, which means the probability of something happen during the period

of y, is
F (Y > y) = 1− Px(0) = 1− e−λy

and, pdf with respect to the y that something happen at that moment is

d

dy
(1− e−λy) = λe−λy
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