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After the expected value and variance of an estimator, we now discuss a third feature:
sufficiency. Whether or not an estimator is sufficient refers to the amount of “information” it
contains about the unknown parameter θ. We start by defining what an estimator for true θ is
sufficient means.

1 Definition and Examples

Definition of Sufficiency
Let X1 = k1, X2 = k2, . . . , Xn = kn be a random sample of size n from pX(k; θ),

let θ̂ = h(X1, X2, . . . , Xn) be the estimator function for the θe, and let pθ̂(θe; θ) be the
probability from pX(k; θ) whatever the domain of θ̂(X) will take as long as the result
value is θe.

Let likelihood function, a function about θ, be L(θ) = p(k1)p(k2) · · · p(kn).
We say estimator θ̂ is sufficient for θ if,

L(θ)
pθ̂(θe; θ)

= b(k1, k2, . . . , kn) or L(θ) = pθ̂(θe; θ) · b(k1, k2, . . . , kn)

Where b(k1, k2, . . . , kn) is some constant independent of θ.

The most confusing part of the above definition is the probability pθ̂(θe; θ). We use two
examples to explain this probability.

Example 1 Suppose a random sample of size n is taken from the Bernoulli pdf,

pX(k; p) = pk(1− p)1−k , k = 0, 1

where p (in definition we use θ to denote parameter, but here we pick p as a convention for
Bernoulli distribution) is an unknown parameter for success, i.e., when k = 1. We know a

maximum likelihood estimator for p is p̂ = 1
n

n∑
i=1

Xi. To check if this estimator is sufficient, we

need the likelihood function and probability of pθ̂(θe; θ).
1Refer to https://online.stat.psu.edu/stat415/lesson/24
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Because every trial is independent, the likelihood function is simply the product of all pdfs:

L(θ) = pk1(1− p)1−k1 · · · pkn(1− p)1−kn = p
∑n

i=1 ki(1− p)n−
∑n

i=1 ki

Let nX denote
∑n
i=1 ki. We can see that pθ̂(θe; θ) in this example is the probability when

in a total of n trials there’re nX successes. And we know that this above sample of size n just
gives us one of many situations where the total successful trials equals to nX:(

n

nX

)
pnX(1− p)n−nX

Following the sufficiency definition, we divide L(θ) by pθ̂(θe; θ), thus in fact we will have a
conditional probability of the sample:

L(θ)
pθ̂(θe; θ)

= pnX(1− p)n−nX( n
nX

)
pnX(1− p)n−nX

=
(
n

nX

)−1

The last term
( n
nX

)−1 is not a function of p, so we conclude that estimator p̂ is sufficient.

Example 2 Suppose a random sample of size n is taken from the Poisson pdf, pX(k) =
e−λλk/k!. We have an estimator λ̂ =

∑n
i=1Xi.

Likelihood function is,

L(λ) =
n∏
i=1

e−λλki/ki! = e−nλλ
∑n

i=1 ki/
n∏
i=1

ki!

This example is that during n terms with a λ = nλ, a total of
∑n
i=1Xi cases happen, the

probability of this situation is,

pλ̂ = e−nλnλ
∑n

i=1 ki/(
n∑
i=1

ki)!

If we divide above terms,

L(λ)
pλ̂

= e−nλλ
∑n

i=1 ki · (
∑n
i=1 ki)!

e−nλnλ
∑n

i=1 ki ·
∏n
i=1 ki!

= (
∑n
i=1 ki)!

n
∑n

i=1 ki
∏n
i=1 ki!

This result is a constant, independent of λ, so we conclude the estimator is sufficient.

2 Factorization Criterion/Fisher-Neyman Theorem

From the above two examples, we can see that to find if the estimator is sufficient, the most
difficult part is to determine the probability of the estimate. If the estimator function or the
pdf itself is complicated, like normal distribution, we may find it increasingly prohibitive to find
the probability. Fortunately, we have a factorization theorem to help us.
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Fisher-Neyman Theorem Let X1 = k1, X2 = k2, . . . , Xn = kn be a random sample
of size n from pX(k; θ). The estimator θ̂ = h(X1, X2, . . . , Xn) is sufficient for θ if and
only if there are functions g[h(k1, k2, . . . , kn); θ] and b(k1, k2, . . . , kn) such that

L(θ) = g[h(k1, k2, . . . , kn); θ] · b(k1, k2, . . . , kn) (1)

where the function b(k1, k2, . . . , kn) does not involve the parameter θ.

Proof: Let’s assume that L(θ) can be factorized into g[h(k1, k2, . . . , kn); θ] and b(k1, k2, . . . , kn).
If we can convert g[h(k1, k2, . . . , kn); θ] back to pθ̂(θe; θ) · b

′, where b′ is some constant, we prove
the sufficiency.

Let c be some end value of estimator function, c = θe = h(k1, k2, . . . , kn). It’s probable
that we can have multiple samples of the same size n, each having a different combination of k
values, but when put into the function, each having the same result of c. We name the total
samples set A,

A = {{k1, k2, . . . , kn}, {k
′
1, k

′
2, . . . , k

′
n}, {k

′′
1 , k

′′
2 , . . . , k

′′
n}, . . . }

The total probability of pθ̂(c; θ) is simply the sum of each and every sample pdf:

pθ̂(c; θ) =
∑
A

n∏
i=1

pX(ki) . : ∏n

i=1 pX(ki)=L(θ)

=
∑
A

g[h(k1, k2, . . . , kn); θ] · b(k1, k2, . . . , kn) . : assume equation (1) hold

=
∑
A

g[c; θ] · b(k1, k2, . . . , kn) . : set A is so constructed that each sample has value c

= g[c; θ] ·
∑
A

b(k1, k2, . . . , kn)

How many samples are there in set A is determined by value c and estimator function h,
so we are safe to say that

∑
A b(k1, k2, . . . , kn) is a constant independent of θ. We are done by

converting g[c; θ] to pθ̂(c; θ):

L(θ) = g[h(k1, k2, . . . , kn); θ] · b(k1, k2, . . . , kn)

= pθ̂(c; θ) ·
b(k1, k2, . . . , kn)∑
A b(k1, k2, . . . , kn)

Example 3 Let X1, X2, . . . , Xn be a random sample from a normal distribution with
mean µ and variance 1. Find a sufficient statistic for the parameter µ.

We can simplify the joint probability by timing pdf of all sample elements:

f(x1, x2, . . . , xn) = 1√
2π
e[−

1
2 (x1−µ)2] · · · 1√

2π
e[−

1
2 (xn−µ)2] = 1

(2π)n/2 e
[− 1

2
∑n

i=1(xi−µ)2] (2)
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We now factorize the exponential part of equation (2),

exp
[
−1

2

n∑
i=1

(xi − µ)2
]

= exp
[
−1

2

n∑
i=1

(xi − x+ x− µ)2
]

= exp
[
−1

2

n∑
i=1

[(xi − x)2 + 2(xi − x)(x− µ) + (x− µ)2]
]

= exp

−1
2

n∑
i=1

(xi − x)2 − (x− µ)
n∑
i=1

(xi − x)︸ ︷︷ ︸
0

−1
2

n∑
i=1

(x− µ)2


= exp

[
−n2 (x− µ)2

]
· exp

[
−1

2

n∑
i=1

(xi − x)2
]

On the right-hand side of the equation, we have a function of µ as the first term, and a con-
stant independent of µ as the second term. According to Fisher-Neyman theorem, we conclude
the sufficient estimator is x or the sum

∑n
i=1Xi.

Example 4 Let X1, X2, . . . , Xn be a random sample from an exponential distribution
with parameter θ, f(x) = 1

θe
−x
θ . Find a sufficient statistic for the parameter θ.

L(θ) = 1
θ
e−

x1
θ

1
θ
e−

x2
θ · · · 1

θ
e−

xn
θ

= 1
θn

exp
[
−1
θ

n∑
i=1

xi

]

This is a function about parameter θ only. But we can still regard it as a factorization of the
function and a constant 1. So we conclude it’s sufficient if the estimator is the sum of variables.

3 Exponential Form

You may not notice that all examples up to now are coming with a pdf that can be written
in exponential form. For such pdf, sample sum is always a sufficient estimator.

Exponential Theorem Let X1 = k1, X2 = k2, . . . , Xn = kn be a random sample from
distribution with a pdf of the exponential form:

f(x; θ) = exp[K(x)p(θ) + S(x) + q(θ)]

with
1. K(x) and S(x) being functions only of x
2. p(θ) and q(θ) being functions only of the parameter θ
3. The support variable x being free of the parameter θ

The estimator
n∑
i=1

K(Xi) is sufficient for θ.
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Proof We use Fisher theorem to prove it. Starting from joint pdf, we have,

L(θ) = exp[K(x1)p(θ) + S(x1) + q(θ)] · · · exp[K(xn)p(θ) + S(xn) + q(θ)]

= exp
[
p(θ)

n∑
i=1

K(Xi) +
n∑
i=1

S(xi) + nq(θ)
]

= exp
[
p(θ)

n∑
i=1

K(Xi) + nq(θ)
]
· exp

[
n∑
i=1

S(xi)
]

We successfully factorize the likelihood function into two parts, one is a function of θ, the
other not. From the above equation, we can see that the θ̂ =

∑n
i=1K(Xi) is a sufficient statistic

for true θ.

Example 5 Let X1, X2, . . . , Xn be a random sample from a geometric distribution with
parameter p. Find a sufficient estimator for p.

The pdf of geometric distribution is: f(x) = (1 − p)x−1p. We write it in exponential form
as,

f(x) = exp
[
x ln(1− p) + ln

(
p

1− p

)]
We don’t have a function for x yet, but that’s easy to deal with. Use the fact that ln

(
x0) = 0,

we can construct a pdf just as the exponential theorem defines.

f(x) = exp
[
x ln(1− p) + ln

(
x0
)

+ ln
(

p

1− p

)]

4 Two or More Parameters

The Fisher-Neyman theorem can easily be extended to accommodate two or more parame-
ters. We give the equation below. The proof is pretty much the same as for single parameter,
so is omitted.

Fisher-Neyman for Two Parameters Let X1, X2, . . . , Xn be a random sample
from distribution with a pdf which depends on two parameters θ1, θ2. Then θ̂1 =
h1(x1, x2, . . . , xn) and θ̂2 = h2(x1, x2, . . . , xn) are sufficient statistics if and only if:

L(θ1, θ2) = φ[h1(x1, x2, . . . , xn), h2(x1, x2, . . . , xn); θ1, θ2] · b(x1, x2, . . . , xn)

Exponential Criterion Let X1, X2, . . . , Xn be a random sample from distribution
with a pdf of the exponential form:

f(x; θ1, θ2) = exp[K1(x)p1(θ1, θ2) +K2(x)p2(θ1, θ2) + S(x) + q(θ1, θ2)]

with a variable x does not depend on parameters. Then, the statistics θ̂1 =
∑n
i=1K1(Xi)

and θ̂2 =
∑n
i=1K2(Xi) are jointly sufficient for true θ1, θ2.
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