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This is a note on heavy stuff. Facing variables from a normal distribution, if we want to
test the null hypothesis, we rely on the the statistic:

Z = Y − µ0
σ/
√
n

Thanks to the central limit theorem, we know the above distribution is normal, and we can use
f(z) to find the probabilities we need.

However, in reality we may never know the variance of the population, and we have only a
limited sample size due to economical reason as well as other restraints.

Our best guess about the variance is S2, also derived from sample:

S2 = 1
n− 1

n∑
i=1

(Yi − Y )2

and we use t-ratio to test our inference,

T = Y − µ0
S/
√
n

It turns out the pdf of t ratio is not exactly the same as normal distribution. Oxford
graduate William Sealy Gossett published a paper in 1908 in which he derived a formula for
the pdf, and later in 1924 R. A. Fisher presented a rigorous mathematical derivation of Gossett’s
pdf. Consequently, the pdf is now known as the Student t distribution.

It involves a lot of work to get the pdf of t ratio. We will start with some background
function ideas, and from section 2 we start proving, while we also attach some lemmas and
their proofs to appendix at the end of the note.

1 Review of some functions

1.1 error function

The error function is defined as

erf(x) = 1√
π

∫ x

0
e−t

2
dt

1
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It has no analytical integrand. From the definition, we have its derivative

erf(x)′ = 1√
π
e−x

2

1.2 gamma function

Γ(r) =
∫ ∞

0
yr−1e−y dy

We’ve discussed some features of the gamma function in previous chapter (4.6). Here we
prove Γ(1/2) =

√
π. First of all we prove its square value and the root will present itself.

Γ(1/2)2 =
(∫ ∞

0
t−1/2e−t dt

)2

Let x2 = t, then the above equation becomes

(∫ ∞
0

t−1/2e−t dt

)2
=
(

2
∫ ∞

0
e−x

2
dx

)2
=
(∫ ∞
−∞

e−x
2
dx

)(∫ ∞
−∞

e−y
2
dy

)
. symmetrical integral

=
∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dx dy =
∫ 2π

0

∫ ∞
0

e−r
2
r dr dθ . to polar coordinates

= π

As a result, we can see that Γ(1/2) =
√
π.

1.3 additive property

Based on gamma function, we have gamma distribution with parameters (r, λ)

fY (y) = λr

Γ(r)︸ ︷︷ ︸
constant

yr−1e−λy, y > 0

Additivity Suppose two independent variables U has the gamma pdf with param-
eters r and λ, V with s and the same λ,

fU (u) = λr

Γ(r)︸ ︷︷ ︸
constant

ur−1e−λu, u > 0 and fV (v) = λr

Γ(s)︸ ︷︷ ︸
constant

vs−1e−λv, v > 0

Then U + V has a gamma pdf with parameters r + s and λ:

fU+V (u+ v) = λr+s

Γ(r + s)︸ ︷︷ ︸
constant

(u+ v)r+s−1e−λ(u+v), (u+ v) > 0
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Proof We proved it half way in chapter 4.6 before we learn beta function. Now we use
beta to fully prove this lemma. Let t = u+ v, then t > 0 and the distribution function of t is

fU+V (t) =
∫ t

0
fU (u)fV (t− u) du . pdf of t is joint pdf of u and v

= λr+s

Γ(r)Γ(s)

∫ t

0
ur−1e−λu(t− u)s−1e−λ(t−u) du

= λr+se−λt

Γ(r)Γ(s)

∫ t

0
ur−1(t− u)s−1 du

= λr+se−λttr+s−1

Γ(r)Γ(s)

∫ 1

0
xr−1(1− x)s−1 dx . Let x = u/t, x ∈ [0, 1]

Now we know that the integrand part of the above equation is beta function,

Beta(r, s) =
∫ 1

0
xr−1(1− x)s−1 dx = Γ(r)Γ(s)

Γ(r + s)

put it back and cancel gamma parts, we have

fU+V (t) = λr+s

Γ(r + s) t
r+s−1e−λt

2 Chi square distribution

Definition The pdf of U =
∑m
i=1 Z

2
i , where Z1, Z2, . . . , Zm are independent standard

normal random variables, is called the chi square distribution with m degrees of freedom.
It turns out that chi square distribution is nothing but a special case of gamma distribution.

pdf of chi square Let U =
∑m
i=1 Z

2
i , where Z1, Z2, . . . , Zm are independent stan-

dard normal random variables, then U has a gamma distribution with r = m/2 and
λ = 1/2 so that

fU (u) = 1
2m/2Γ(m/2)

u(m/2)−1e−u/2 , u > 0 (2.1)

Proof Let’s first study the case when m = 1 so U = Z2. We find cdf of the Z2 and then
differentiate it to get the pdf of it.

FZ2(u) = P (Z2 6 u) = P (−
√
u 6 Z 6

√
u) = 2 · P (Z 6

√
u)

Since Z is standard normal, we have Z cdf for less than
√
u,

FZ2(u) = 2 · P (Z 6
√
u) = 2 · 1√

2π

∫ √u
0

e−z
2/2 dz

If we differentiate both sides wrt u,

fZ2(u) = 2√
2π

d

du

∫ √u
0

e−z
2/2 dz = 2√

2π
d
√
u

du
e−
√
u

2
/2 = 1√

2π
1√
u
e−u/2
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Use the knowledge of Γ(1/2) =
√
π, we can re-write

fZ2(u) =
(1

2)
1
2

Γ(1
2)
u

1
2−1e−

u
2

The above is a gamma distribution with r = λ = 1
2 .

Once we have the pdf for single Z2, we know the pdf of the sum of m-tuple Z2 is also a
gamma distribution, with r = m/2 and the same λ = 1/2, according to the additive property
of gamma distribution:

fU (u) = (1/2)m/2

Γ(m/2) u
(m/2)−1e−u/2

Figure 1: chi square with m = 4

3 S2 is chi square

Okay, we are now one step closer. Let’s turn to study the t2 ratio:

t2 = (Y − µ)2

S2/n

theorem Let Y1, Y2, . . . , Yn be a random sample from a normal distribution with
mean µ and variance σ2, then

a. S2 and Y are independent

b. the following term has a chi square distribution with n− 1 degrees of freedom:

(n− 1)S2/σ2 =
n∑
i=1

(Yi − Y )2/σ2 (3.1)

Proof We standardize Yi by setting Xi = (Yi − µ)/σ. Let A be a n square orthogonal
matrix whose lase row is ( 1√

n
, 1√

n
, . . . , 1√

n
). If we define vector ~X = [X1, X2, . . . , Xn], we can get

another vector ~Z = A ~X. Note the last component of ~Z, Zn = 1√
n

(X1 +X2 + · · ·+Xn) =
√
nX.

By the property of orthogonal matrix (see appendix), we observe by intuition:

- 4 -



Mathematical Statistics 7.3 Student t Distribution

(1) Xi is mapping to Zi in a new orthonormal coordinates, the shape of ~X doesn’t change,
it’s the same as ~Z.

(2) From (1), we know the same shape of vector ~X is popping up in A orthonormal coor-
dinate, and it’s projection on the new coordinate is just the components of vector ~Z. As ~X’s
component Xi is standard normal, so is ~Z’s.

Here below we give rigorous proof.
Suppose ~Z belongs to a set D, we have

P (~Z ∈ D) = P (A ~X ∈ D) = P ( ~X ∈ A−1D) . A−1A ~X= ~X

If we integrate probability of fX(x) over set A−1D, we get

P ( ~X ∈ A−1D) =
∫
A−1D

fX(x1) · · · fX(xn) dx1 · · · dxn

Jacobian Determinant:
Now we want to integrate zi over D instead of xi over A−1D, we need Jacobian determinant

(see appendix) for dz, i.e.,

det(J) =
∣∣∣∣ ∂(x1, . . . xn)
∂(z1, . . . , zn)

∣∣∣∣
However, we cannot get this determinant directly from Jacobian matrix for z. But we notice
the following relationship between dxi and dzi:

dx1 · · · dxn =
∣∣∣∣ ∂(x1, . . . xn)
∂(z1, . . . , zn)

∣∣∣∣ dz1 · · · dzn

and ∣∣∣∣ ∂(z1, . . . zn)
∂(x1, . . . , xn)

∣∣∣∣ dx1 · · · dxn = dz1 · · · dzn

so we have ∣∣∣∣ ∂(x1, . . . xn)
∂(z1, . . . , zn)

∣∣∣∣ =
∣∣∣∣ ∂(z1, . . . zn)
∂(x1, . . . , xn)

∣∣∣∣−1

It’s obvious to find ∂zi
∂xi

. From ~Z = A ~X, we have

zi = ai1x1 + ai2x2 + · · ·+ ainxn

Differentiating zi wrt x1, x2, . . . , xn, since x is independent variable, we have ith row of the
Jacobian matrix as,

[ai1, ai2, . . . , ain]

We can conclude that the Jacobian matrix is the same as orthogonal matrix A:

det(J) =
∣∣∣∣ ∂(z1, . . . zn)
∂(x1, . . . , xn)

∣∣∣∣ = det(A) = 1
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then ∣∣∣∣ ∂(x1, . . . xn)
∂(z1, . . . , zn)

∣∣∣∣ =
∣∣∣∣ ∂(z1, . . . zn)
∂(x1, . . . , xn)

∣∣∣∣−1
= 1

Now we continue working on the integrand wrt variable x,

P (~Z ∈ D) = P ( ~X ∈ A−1D) =
∫
A−1D

fX(x1) · · · fX(xn) dx1 · · · dxn

=
∫
D
fX(x1) · · · fX(xn)

∣∣∣∣ ∂(x1, . . . xn)
∂(z1, . . . , zn)

∣∣∣∣ dz1 · · · dzn

=
∫
D
fX(g(z1)) · · · fX(g(zn)) · 1 · dz1 · · · dzn

where g(zi) is mapping z back to x. Because ~X = A−1 ~Z, we know function g is row multipli-
cation of inverse matrix A−1.

Now as fX is the pdf of standard normal distribution, we have the above equation further
developed as

P (~Z ∈ D) =
∫
D

(2π)−n/2e−(1/2)(x2
1+x2

2+···+x2
n) dz1 · · · dzn

But we already know that
∣∣∣ ~X∣∣∣ =

∣∣∣~Z∣∣∣, so
x2

1 + x2
2 + · · ·+ x2

n = z2
1 + z2

2 + · · ·+ z2
n

n∑
i=1

X2
i =

n∑
i=1

Z2
i

then
P (~Z ∈ D) =

∫
D

(2π)−n/2e−(1/2)(z2
1+z2

2+···+z2
n) dz1 · · · dzn

implying that Zi is also independent standard normal.
As the last component of vector ~Z is

√
nX, so

n∑
i=1

Z2
i =

n−1∑
i=1

Z2
i + nX

2

Now let’s see what we can get from X2,

n∑
i=1

X2
i =

n∑
i=1

X2
i − 2nX2 + 2nX2

=
n∑
i=1

(Xi −X)2 + nX
2

We have two conclusions from above equations:

(1)
n∑
i=1

(Xi −X)2 =
n−1∑
i=1

Z2
i ;
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(2) As Zi is independent distribution, so Zn = nX
2 is independent to

n−1∑
i=1

Z2
i , so we know

nX
2, and of course X, are also independent to

n∑
i=1

(Xi −X)2.

Recalling at the beginning, we let Xi = (Yi − µ)/σ, so

n∑
i=1

Xi = 1
σ

n∑
i=1

(Yi − µ)

nX = 1
σ

(nY − nµ)

σX + µ = Y

and

n∑
i=1

(Yi − Y )2 =
n∑
i=1

(σXi + µ− σX − µ)2 = σ2
n∑
i=1

(Xi −X)2

Coming all this long way, we finally arrive at the result:

(1) Just as X and
n∑
i=1

(Xi −X)2 are independent, Y and
n∑
i=1

(Yi − Y )2 are also independent.

(2) n− 1
σ2 S2 =

n∑
i=1

(Xi −X)2 =
n−1∑
i=1

Z2
i , so it’s a chi square distribution with n− 1 degrees.

4 F distribution

We will see the square of t ratio is a special case of F distribution. But first of all, what’s
F distribution?

Definition Suppose that U and V are independent chi square variables with n and m
degrees of freedom. Let W = V/m

U/n
, we call the distribution of W an F distribution with m

and n degrees of freedom.

Figure 2: F distribution with m = 4, n = 7
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F distribution Suppose Fm,n(W ) = V/m

U/n
denotes an F variable with m,n degrees

of freedom. The pdf of Fm,n has the form

fFm,n(w) =
Γ(m+n

2 )mm/2nn/2w(m/2)−1

Γ(m2 )Γ(n2 )(n+mw)(m+n)/2 , w > 0 (4.1)

Proof We begin by finding the pdf for V/U before they are divided by m,n respectively.
From Eq. 2.1, we have

fV (v) = 1
2m/2Γ(m/2)

v(m/2)−1e−v/2 and fU (u) = 1
2n/2Γ(n/2)

u(n/2)−1e−u/2

Now we let W ′ = V/U . Here below is a little lemma for quotient pdf.

lemma Let w = y/x, the pdf of w is

f(w) =
∫
xf(x)f(wx)dx

So we have pdf of W ′

fV/U (w′) =
∫ ∞

0
ufU (u)fV (uw′) du

=
∫ ∞

0
u

1
2n/2Γ(n/2)

u(n/2)−1e−u/2 1
2m/2Γ(m/2)

(uw′)(m/2)−1e−uw
′/2 du

= 1
2(n+m)/2Γ(n/2)Γ(m/2)

w′(m/2)−1
∫ ∞

0
u

n+m
2 −1e−[(1+w′)/2]u du

Now we let y = 1 + w′

2 u, the integrand above can be written as

∫ ∞
0

u
n+m

2 −1e−[(1+w′)/2]u du =
∫ ∞

0

( 2y
1 + w′

)n+m
2 −1

e−y · 2
1 + w′

dy

=
( 2

1 + w′

)n+m
2
∫ ∞

0
y

n+m
2 −1e−y dy

=
( 2

1 + w′

)n+m
2

Γ
(
n+m

2

)
. integrand is a gamma func.

then

fV/U (w′) = 1
2(n+m)/2Γ(n/2)Γ(m/2)

w′(m/2)−1
( 2

1 + w′

)n+m
2

Γ
(
n+m

2

)
=

Γ(n+m
2 )

Γ(n/2)Γ(m/2) ·
w′(m/2)−1

(1 + w′)
n+m

2
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Comment since 1
Beta(n2 ,

m
2 ) =

Γ(n+m
2 )

Γ(n/2)Γ(m/2) , we can also write

fV/U (w′) = 1
Beta(n2 ,

m
2 ) ·

w′(m/2)−1

(1 + w′)
n+m

2

As W = V/m

U/n
and W ′ = V

U
, we have W = W ′

n

m
. To use pdf for W ′ to represent W ’s, we

need another lemma first.

lemma Let y = ax, and pdf for x is fX(x), then fY (y) is 1
|a|
fX

(
y

x

)
.

Proof If we integrate x to get the cdf of y, it’s like this:

F (y) =
∫ ax

0
fX(x) dx

Notice that dy = a dx, then differentiate both sides to get the pdf for y,

F (y)′ = fY (y) =
[∫ y

0
fX

(
y

a

) 1
a
dy

]′
= 1
|a|
fX

(
y

x

)

Follow this route, we know that,

f(w) = m

n
fV/U (W · m

n
)

= m

n

1
Beta(n2 ,

m
2 ) ·

(wm/n)(m/2)−1

(1 + wm/n)(n+m)/2

= 1
Beta(n2 ,

m
2 ) ·

mm/2nn/2w(m/2)−1

(n+mw)(m+n)/2

thus proven.

5 F to t ratios

Our goal is to find the pdf of t = Y − µ
S/
√
n
. It turns out, however, that t just belongs to a

family of quotients known as t ratios. By finding the pdf for that family, we can easily find the
pdf of t as well.

Definition t ratios family: Let Z be a standard normal, and let Un be a chi square
random variable with n degrees of freedom and independent of Z. The student t ratio

with n degrees of freedom is denoted Tn,

Tn = Z√
Un/n

lemma fTn(t) is symmetric for all t. From this symmetrical property, and based on F
distribution, we have the t ratio pdf below.

- 9 -
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pdf of t ratio with n df

fTn(t) = 1
√
nBeta

(1
2 ,
n

2

) (1 + t2

n

)−(n+1)/2

(5.1)

Proof We can suppose t > 0. Due to the symmetry of the pdf, we can find P (t < 0) by
1− P (t > 0).

FTn(t) = 1
2 + P (0 6 Tn 6 t) . symmetrical on 0

= 1
2 + 1

2P (−t 6 Tn 6 t)

= 1
2 + 1

2P (0 6 T 2
n 6 t2)

= 1
2 + 1

2FT 2
n
(t2) . when F dist. can kick in

then we can differentiate both sides to get the pdf for t,

fTn(t) = F ′Tn
(t) = 1

2 · 2t · fT 2
n
(t2) = t · fT 2

n
(t2)

But as Z2 is divided by none, and U is divided by n, we know T 2
n has a F-distribution pdf

with m = 1, n = n degrees of freedom,

T 2
n = Z2

U/n

so

fT 2
n
(t2) = 1

Beta(n2 ,
1
2)
· nn/2(t2)−

1
2

(n+ t2)(1+n)/2

and

fTn(t) = t · fT 2
n
(t2) = t · 1

Beta(n2 ,
1
2)
· nn/2(t2)−

1
2

(n+ t2)(1+n)/2

= 1
Beta(n2 ,

1
2)
· nn/2

(n+ t2)(1+n)/2

= 1
√
nBeta(n2 ,

1
2)
· n(1+n)/2

(n+ t2)(1+n)/2

= 1
√
nBeta(n2 ,

1
2)
·
(

1 + t2

n

)−(1+n)/2

6 final step

We have only one missing piece to the whole puzzle: how to verify our ratio is in fact a
student t ratio so that the above pdf can apply. Let’s give the conclusion first then the proof

- 10 -
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process.

theorem Let Y1, Y2, . . . , Yn be a random sample from a normal distribution with
mean µ and variance σ2, then

Tn−1 = Y − µ
S/
√
n

has a student t distribution with (n− 1) degrees of freedom.

Proof In order to prove that Tn−1 is a student t distribution, we need to prove that
Y − µ is a standard normal, and the square of denominator S2/n is a chi square with some
degrees of freedom.

Let’s divide both numerator and denominator by σ/
√
n, then:

(1) for the numerator, it becomes Y − µ
σ/
√
n
. We know this is a standard normal by CLT.

(2) for the denominator, we have,

S/
√
n

σ/
√
n

= S

σ
=

√
S2

σ2

We know that S2 = 1
n−1

∑n
i=1(Yi − Y )2, so

√
S2

σ2 =
√

(n− 1)S2

σ2(n− 1) =

√∑n
i=1(Yi − Y )2

σ2(n− 1)

By Eq. 3.1, it’s evident that
∑n

i=1(Yi−Y )2

σ2 is a chi square with n − 1 degrees of freedom. By
dividing (n−1) again, the whole fraction is exactly a form of student t ratio with n−1 degrees.

Take a second look at student t distribution! As degree n→∞, S is asymptotically close to
σ. As a result, the distribution of Tn−1 is more and more like a standard normal. The following
graph show this point 1.

Figure 3: Compare of t with normal

1Graph from Wikipedia.
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0 Appendix

0.1 orthogonal matrix

Definition A square matrix P is called orthogonal if it is invertible and if

P−1 = P T

From this definition, we can deduce some interesting properties of the orthogonal matrix.

theorem A square n matrix P is orthogonal if and only if its column vectors for an
orthonormal set.

Proof let pi stands for column i of matrix P , so P = [p1p2 · · ·pn]. The product of P TP
has the form

P TP =


p11 p21 · · · pn1

p12 p22 · · · pn2
...

...
...

p1n p2n · · · pnn




p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
...

pn1 pn2 · · · pnn



=


p1 · p1 p1 · p2 · · · p1 · pn
p2 · p1 p2 · p2 · · · p2 · pn

...
...

...
pn · p1 pn · p2 · · · pn · pn


We now suppose the column vectors of P form an orthonormal set, so pi ·pi = 1, elsewhere

is 0, and P TP = In.
But as P−1P = I, we conclude that P T = P−1, thus prove orthonormal leads to orthogonal.

theorem Matrix P of square n is orthogonal if and only if for any vector of length
n, ~β ∣∣∣P ~β∣∣∣ =

∣∣∣~β∣∣∣
Proof we denote ~β = [b1, b2, . . . , bn], so

P ~β = [b1p1 + b2p2 + · · · bnpn]

Notice that we are now in a new space with p1,p2, . . . ,pn as its new coordinates. What’s bi?
they are nothing but components’ scalar of old coordinates! We use these scalars to construct
components in new coordinates, and b1p1, b2p2, . . . , bnpn are new components, squaring of which
is the original length,

∣∣∣P ~β∣∣∣2 = (b1p1)2 + (b2p2)2 + · · · (bnpn)2 = b2
1 + b2

2 + · · ·+ b2
n =

∣∣∣~β∣∣∣2

- 12 -
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We cancelled out p2
i because orthogonal means orthonormal, each column vector length is 1.

theorem If matrix P is orthogonal, then det(P ) = 1.

Proof we have three lemmas to verify this theorem.
lemma 1: det(AB) = det(A) det(B) −→ 1 = det(P ) det

(
P−1)

lemma 2: det(P ) = det
(
P T
)

lemma 3: det
(
P−1) = det

(
P T
)

0.2 Jacobian transformation

We are familiar with certain coordinate changes like this one:∫∫
D
f(x, y) dx dy =

∫∫
D0
f(r cos θ, r sin θ)r dr dθ

In fact, the above is just a special case of Jacobian transformation. If we define x = fx(u, v)
and y = fy(u, v), a square from uv coordinates to x, y plane may look like this,

Figure 4: change from uv to xy coordinates

The deformed shape is close to a parallelogram. From the lower-most point, we want to
find two vectors (the two sides of the parallelogram), and use them to calculate the area of the
shape. You may notice it’s not exactly a standard parallelogram, but when we look into very
tiny piece of shapes, the approximation would be quite nice.

Assume the lowest point is (u0, v0), and ~a for up-right direction, ~b for up-left direction.

~a = [fx(u0 + ∆u, v0)− fx(u0, v0), fy(u0 + ∆u, v0)− fy(u0, v0)]
.=
[
∆u∂x

∂u
,∆u∂y

∂u

]
~b = [fx(u0, v0 + ∆v)− fx(u0, v0), fy(u0, v0 + ∆v)− fy(u0, v0)]
.=
[
∆v∂x

∂v
,∆v∂y

∂v

]

How to calculate the area of parallelogram from vectors ~a,~b? Some algebraic work will yield
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answer: the parallelogram area is the absolute value of the determinant of the following matrix,

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v



Jacobian determinant = ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

As a convention, we often use
∣∣∣∣∂x, y∂u, v

∣∣∣∣ to denote the Jacobian determinant. Let ∆A = dx dy

denote every piece of shape in xy plane, then

∆A .=
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣∆u∆v

In the end, we can integrate the shape in uv coordinates∫∫
D
f(x, y) dx dy =

∫∫
D0
f(fx(u, v), fy(u, v))

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv
Comment be aware of the region D0, it may often change also. To get the correct

integral, you need to make sure the distorted region cope with the relationship between new
and old coordinates.

Jacobian determinant rule also apply to 3D or even higher dimensions. Again we pick a tiny
piece of block from xyz space and see what distorted shape it is in the new uvw coordinates.

Figure 5: 3D shape distorted

Following the same manner, we need to find three vectors ~a,~b and ~c, and we have

∆V = dx dy dz = a · (b× c) = det


∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∆u∆v∆w

so ∫∫∫
D
f(x, y, z) dx dy dz =

∫∫∫
D0
f(fx, fy, fz)

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw
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